Respiration-driven triboelectric nanogenerators for biomedical applications

被引:63
作者
Li, Jun [1 ]
Long, Yin [1 ]
Yang, Fan [1 ]
Wang, Xudong [1 ]
机构
[1] Univ Wisconsin, Dept Mat Sci & Engn, 1509 Univ Ave, Madison, WI 53706 USA
基金
美国国家卫生研究院;
关键词
biomechanical energy harvesting; implantable medical devices; respiration; triboelectric nanogenerator; wearable medical devices; PRESSURE SENSORS; ENERGY; STIMULATION; BATTERIES; BIOCOMPATIBILITY; PERFORMANCE; EFFICIENCY; VOLUNTARY; HEARTBEAT; SURFACES;
D O I
10.1002/eom2.12045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As a fundamental and ubiquitous body motion, respiration offers a large amount of biomechanical energy with an average power up to the Watt level through movements of multiple muscles. The energy from respiration featured with excellent stability, accessibility and continuality inspires the design and engineering of biomechanical energy harvesting devices, such as triboelectric nanogenerators (TENGs), to realize human-powered electronics. This review article is thus dedicated to the emerging respiration-driven TENG technology, covering fundamentals, applications, and perspectives. Specifically, the human breathing mechanics are first introduced serving as the base for the developments of TENG devices with different configurations. Biomedical applications including electrical energy generation, healthcare monitoring, air filtration, gas sensing, electrostimulation, and powering implantable medical devices are then analyzed focusing on the design-application relationships. At last, current developments are summarized and critical challenges for driving these intriguing developments toward practical applications are discussed together with promising solutions.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Materials Beyond Conventional Triboelectric Series for Fabrication and Applications of Triboelectric Nanogenerators
    Khandelwal, Gaurav
    Raj, Nirmal Prashanth Maria Joseph
    Kim, Sang-Jae
    ADVANCED ENERGY MATERIALS, 2021, 11 (33)
  • [42] Triboelectric Nanogenerators with Machine Learning for Internet of Things
    Yang, Jiayi
    Hong, Keke
    Hao, Yijun
    Zhu, Xiaopeng
    Qin, Yong
    Su, Wei
    Zhang, Hongke
    Zhang, Chuguo
    Wang, Zhong Lin
    Li, Xiuhan
    ADVANCED MATERIALS TECHNOLOGIES, 2025, 10 (04):
  • [43] Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications
    Zhu, Guang
    Peng, Bai
    Chen, Jun
    Jing, Qingshen
    Wang, Zhong Lin
    NANO ENERGY, 2015, 14 : 126 - 138
  • [44] Electrically Responsive Materials and Devices Directly Driven by the High Voltage of Triboelectric Nanogenerators
    Nie, Jinhui
    Chen, Xiangyu
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (41)
  • [45] Wearable and Implantable Triboelectric Nanogenerators
    Liu, Zhuo
    Li, Hu
    Shi, Bojing
    Fan, Yubo
    Wang, Zhong Lin
    Li, Zhou
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (20)
  • [46] High-sensitivity RGO-TiO2 humidity sensor driven by triboelectric nanogenerators for non-contact monitoring of human respiration
    Yu, Shuguo
    Zhang, Hongyan
    Zhang, Jun
    Hu, Ziyan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 935
  • [47] Could respiration-driven blood oxygen changes modulate neural activity?
    Zhang, Qingguang
    Haselden, William D.
    Charpak, Serge
    Drew, Patrick J.
    PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2023, 475 (01): : 37 - 48
  • [48] Momentum Transfer in Triboelectric Nanogenerators
    Yu, Zeyang
    Zhang, Yuyang
    Willatzen, Morten
    Shao, Jiajia
    Wang, Zhong Lin
    ADVANCED PHYSICS RESEARCH, 2024, 3 (04):
  • [49] Dynamics of triboelectric nanogenerators: A review
    Xu, Guoqiang
    Li, Chuanyang
    Chen, Chaojie
    Fu, Jingjing
    Hou, Tingting
    Zi, Yunlong
    INTERNATIONAL JOURNAL OF MECHANICAL SYSTEM DYNAMICS, 2022, 2 (04): : 311 - 324
  • [50] Paper-based triboelectric nanogenerators and their applications: a review
    Han, Jing
    Xu, Nuo
    Liang, Yuchen
    Ding, Mei
    Zhai, Junyi
    Sun, Qijun
    Wang, Zhong Lin
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2021, 12 : 151 - 171