Elliptic curves over Fp and determinants of Legendre matrices

被引:10
作者
Wu, Hai-Liang [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Determinants; Legendre symbols; Character sums; Elliptic curves;
D O I
10.1016/j.ffa.2021.101929
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Determinants with Legendre symbol entries have close relations with character sums and elliptic curves over finite fields. In recent years, Sun [16], Krachun and his cooperators [11] studied this topic. In this paper, we confirm some conjectures posed by Sun and investigate some related topics. For instance, given any integers c, dwith d not equal 0 and c(2)-4d not equal 0, we show that there are infinitely many odd primes psuch that det [(i(2) + cij + dj(2)/p)](0 <= i,j <= p-1) = 0, where (./p) is the Legendre symbol. This confirms a conjecture of Sun. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:26
相关论文
共 50 条
[21]   Infinite rank of elliptic curves over Qab [J].
Im, Bo-Hae ;
Larsen, Michael .
ACTA ARITHMETICA, 2013, 158 (01) :49-59
[22]   Modules Over the Noncommutative Torus and Elliptic Curves [J].
D'Andrea, Francesco ;
Fiore, Gaetano ;
Franco, Davide .
LETTERS IN MATHEMATICAL PHYSICS, 2014, 104 (11) :1425-1443
[23]   Orchards in elliptic curves over finite fields [J].
Padmanabhan, R. ;
Shukla, Alok .
FINITE FIELDS AND THEIR APPLICATIONS, 2020, 68
[24]   Legendre Symbols Related to Certain Determinants [J].
Xin-Qi Luo ;
Zhi-Wei Sun .
Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
[25]   Legendre Symbols Related to Certain Determinants [J].
Luo, Xin-Qi ;
Sun, Zhi-Wei .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (04)
[26]   On some determinants with Legendre symbol entries [J].
Sun, Zhi-Wei .
FINITE FIELDS AND THEIR APPLICATIONS, 2019, 56 :285-307
[27]   Group structure of elliptic curves over Z/NZ [J].
Sala, Massimiliano ;
Taufer, Daniele .
JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2024, 18 (01)
[28]   A generalization of ElGamal signature variants over elliptic curves [J].
Ihia, M. ;
Khadir, O. .
JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2025, 28 (01) :1-15
[29]   Torsion groups of elliptic curves over Q(μp∞) [J].
Guzvic, Tomislav ;
Vukorepa, Borna .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (08) :1745-1761
[30]   Torsion of rational elliptic curves over quadratic fields [J].
Enrique González-Jiménez ;
José M. Tornero .
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 2014, 108 :923-934