kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator

被引:71
作者
Halls, Benjamin R. [1 ]
Hsu, Paul S. [2 ]
Jiang, Naibo [2 ]
Legge, Ethan S. [2 ]
Felver, Josef J. [2 ]
Slipchenko, Mikhail N. [2 ]
Roy, Sukesh [2 ]
Meyer, Terrence R. [3 ]
Gord, James R. [1 ]
机构
[1] US Air Force, Res Lab, Aerosp Syst Directorate, Wright Patterson AFB, OH 45433 USA
[2] Spectral Energies LLC, 5100 Springfield St, Dayton, OH 45431 USA
[3] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
LASER-INDUCED-FLUORESCENCE; TURBULENT FLAMES; PREMIXED FLAME; SINGLE-SHOT; HIGH-SPEED; OH; COMBUSTION; FRACTION;
D O I
10.1364/OPTICA.4.000897
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recent work on four-dimensional (4D) tomographic imaging of reacting and non-reacting flows has utilized fluorescence, incandescence, or scattering from flow tracers, particulates, or aerosols, typically at the harmonics of an Nd:YAG laser. This paper presents high-speed 4D, volumetric laser-induced fluorescence measurements using an ultraviolet-tunable narrowband laser source to reach electronic transitions of chemical species of interest, such as the hydroxyl radical (OH), which may exist at parts-per-million (ppm) levels. A custom injection-seeded optical parametric oscillator pumped by a high-speed burst-mode laser was used for volumetric excitation of OH fluorescence, which was then captured by a pair of quadscopes to record eight unique views simultaneously at 10 kHz using only two high-speed intensified cameras. Successful tomographic imaging using high-energy, tunable narrowband radiation from a high-speed laser source lays the foundation for spatiotemporal, multidimensional analyses of a wide range of reacting and non-reacting flows of practical interest. (C) 2017 Optical Society of America
引用
收藏
页码:897 / 902
页数:6
相关论文
共 34 条
[1]   Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames [J].
Anikin, N. ;
Suntz, R. ;
Bockhorn, H. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 100 (03) :675-694
[2]  
Becker H., APPL PHYS B, V50, P473
[3]   On the importance of temporal context in interpretation of flame discontinuities [J].
Boxx, I. ;
Heeger, C. ;
Gordon, R. ;
Boehm, B. ;
Dreizier, A. ;
Meier, W. .
COMBUSTION AND FLAME, 2009, 156 (01) :269-271
[4]   Practical aspects of implementing three-dimensional tomography inversion for volumetric flame imaging [J].
Cai, Weiwei ;
Li, Xuesong ;
Ma, Lin .
APPLIED OPTICS, 2013, 52 (33) :8106-8116
[5]   COMBUSTION-TORCH IGNITION - FLUORESCENCE IMAGING OF OH CONCENTRATION [J].
CATTOLICA, R ;
VOSEN, S .
COMBUSTION AND FLAME, 1987, 68 (03) :267-&
[6]   High-repetition-rate three-dimensional OH imaging using scanned planar laser-induced fluorescence system for multiphase combustion [J].
Cho, Kevin Y. ;
Satija, Aman ;
Pourpoint, Timothee L. ;
Son, Steven F. ;
Lucht, Robert P. .
APPLIED OPTICS, 2014, 53 (03) :316-326
[7]   High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows [J].
Coriton, Bruno ;
Steinberg, Adam M. ;
Frank, Jonathan H. .
EXPERIMENTS IN FLUIDS, 2014, 55 (06)
[8]   RAPIDLY SEQUENCED PAIR OF TWO-DIMENSIONAL IMAGES OF OH LASER-INDUCED FLUORESCENCE IN A FLAME [J].
DYER, MJ ;
CROSLEY, DR .
OPTICS LETTERS, 1984, 9 (06) :217-219
[9]   Computed Tomography of Chemiluminescence (CTC): Instantaneous 3D measurements and Phantom studies of a turbulent opposed jet flame [J].
Floyd, J. ;
Geipel, P. ;
Kempf, A. M. .
COMBUSTION AND FLAME, 2011, 158 (02) :376-391
[10]  
Fuest F., 2016, WIPP 36 INT S COMB S