Persistent mTORC1 signaling in cell senescence results from defects in amino acid and growth factor sensing

被引:108
作者
Carroll, Bernadette [1 ]
Nelson, Glyn [1 ]
Rabanal-Ruiz, Yoana [1 ]
Kucheryavenko, Olena [1 ,5 ]
Dunhill-Turner, Natasha A. [1 ]
Chesterman, Charlotte C. [1 ]
Zahari, Qabil [1 ]
Zhang, Tong [3 ]
Conduit, Sarah E. [4 ]
Mitchell, Christina A. [4 ]
Maddocks, Oliver D. K. [3 ]
Lovat, Penny [2 ]
von Zglinicki, Thomas [1 ]
Korolchuk, Viktor I. [1 ]
机构
[1] Newcastle Univ, Inst Cell & Mol Biosci, Newcastle Upon Tyne, Tyne & Wear, England
[2] Newcastle Univ, Inst Cellular Med, Newcastle Upon Tyne, Tyne & Wear, England
[3] Univ Glasgow, Inst Canc Sci, Wolfson Wohl Canc Res Ctr, Glasgow, Lanark, Scotland
[4] Monash Univ, Monash Biomed Discovery Inst, Dept Biochem & Mol Biol, Canc Program, Clayton, Vic, Australia
[5] Fed Inst Risk Assessment, Berlin, Germany
基金
英国医学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
HUMAN FIBROBLASTS; AUTOPHAGY; CILIA; MITOCHONDRIA; SUFFICIENCY; PHENOTYPE; DISEASE; DEATH; MICE;
D O I
10.1083/jcb.201610113
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mammalian target of rapamycin complex 1 (mTORC1) and cell senescence are intimately linked to each other and to organismal aging. Inhibition of mTORC1 is the best-known intervention to extend lifespan, and recent evidence suggests that clearance of senescent cells can also improve health and lifespan. Enhanced mTORC1 activity drives characteristic phenotypes of senescence, although the underlying mechanisms responsible for increased activity are not well understood. We have identified that in human fibroblasts rendered senescent by stress, replicative exhaustion, or oncogene activation, mTORC1 is constitutively active and resistant to serum and amino acid starvation. This is driven in part by depolarization of senescent cell plasma membrane, which leads to primary cilia defects and a resultant failure to inhibit growth factor signaling. Further, increased autophagy and high levels of intracellular amino acids may act to support mTORC1 activity in starvation conditions. Interventions to correct these phenotypes restore sensitivity to the mTORC1 signaling pathway and cause death, indicating that persistent signaling supports senescent cell survival.
引用
收藏
页码:1949 / 1957
页数:9
相关论文
共 37 条
  • [1] Naturally occurring p16Ink4a-positive cells shorten healthy lifespan
    Baker, Darren J.
    Childs, Bennett G.
    Durik, Matej
    Wijers, Melinde E.
    Sieben, Cynthia J.
    Zhong, Jian
    Saltness, Rachel A.
    Jeganathan, Karthik B.
    Verzosa, Grace Casaclang
    Pezeshki, Abdulmohammad
    Khazaie, Khashayarsha
    Miller, Jordan D.
    van Deursen, Jan M.
    [J]. NATURE, 2016, 530 (7589) : 184 - +
  • [2] Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders
    Baker, Darren J.
    Wijshake, Tobias
    Tchkonia, Tamar
    LeBrasseur, Nathan K.
    Childs, Bennett G.
    van de Sluis, Bart
    Kirkland, James L.
    van Deursen, Jan M.
    [J]. NATURE, 2011, 479 (7372) : 232 - U112
  • [3] Primary Cilium-Dependent and -Independent Hedgehog Signaling Inhibits p16INK4A
    Bishop, Cleo L.
    Bergin, Ann-Marie H.
    Fessart, Delphine
    Borgdorff, Viola
    Hatzimasoura, Elizabeth
    Garbe, James C.
    Stampfer, Martha R.
    Koh, Jim
    Beach, David H.
    [J]. MOLECULAR CELL, 2010, 40 (04) : 533 - 547
  • [4] Primary cilia regulate mTORC1 activity and cell size through Lkb1
    Boehlke, Christopher
    Kotsis, Fruzsina
    Patel, Vishal
    Braeg, Simone
    Voelker, Henriette
    Bredt, Saskia
    Beyer, Theresa
    Janusch, Heike
    Hamann, Christoph
    Goedel, Markus
    Mueller, Klaus
    Herbst, Martin
    Hornung, Miriam
    Doerken, Mara
    Koettgen, Michael
    Nitschke, Roland
    Igarashi, Peter
    Walz, Gerd
    Kuehn, E. Wolfgang
    [J]. NATURE CELL BIOLOGY, 2010, 12 (11) : 1115 - U126
  • [5] Ciliary abnormalities in senescent human fibroblasts impair proliferative capacity
    Breslin, Loretta
    Prosser, Suzanna L.
    Cuffe, Sandra
    Morrison, Ciaran G.
    [J]. CELL CYCLE, 2014, 13 (17) : 2773 - 2779
  • [6] Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity
    Carroll, Bernadette
    Maetzel, Dorothea
    Maddocks, Oliver D. K.
    Otten, Gisela
    Ratcliff, Matthew
    Smith, Graham R.
    Dunlop, Elaine A.
    Passos, Joao F.
    Davies, Owen R.
    Jaenisch, Rudolf
    Tee, Andrew R.
    Sarkar, Sovan
    Korolchuk, Viktor I.
    [J]. ELIFE, 2016, 5
  • [7] Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis
    Carroll, Bernadette
    Korolchuk, Viktor I.
    Sarkar, Sovan
    [J]. AMINO ACIDS, 2015, 47 (10) : 2065 - 2088
  • [8] Carroll B, 2013, ESSAYS BIOCHEM, V55, P119, DOI [10.1042/BSE0550119, 10.1042/bse0550119]
  • [9] Mitochondria are required for pro-ageing features of the senescent phenotype
    Correia-Melo, Clara
    Marques, Francisco D. M.
    Anderson, Rhys
    Hewitt, Graeme
    Hewitt, Rachael
    Cole, John
    Carroll, Bernadette M.
    Miwa, Satomi
    Birch, Jodie
    Merz, Alina
    Rushton, Michael D.
    Charles, Michelle
    Jurk, Diana
    Tait, Stephen W. G.
    Czapiewski, Rafal
    Greaves, Laura
    Nelson, Glyn
    Bohlooly-Y, Mohammad
    Rodriguez-Cuenca, Sergio
    Vidal-Puig, Antonio
    Mann, Derek
    Saretzki, Gabriele
    Quarato, Giovanni
    Green, Douglas R.
    Adams, Peter D.
    von Zglinicki, Thomas
    Korolchuk, Viktor I.
    Passos, Joao F.
    [J]. EMBO JOURNAL, 2016, 35 (07) : 724 - 742
  • [10] Regulation of TORC1 in Response to Amino Acid Starvation via Lysosomal Recruitment of TSC2
    Demetriades, Constantinos
    Doumpas, Nikolaos
    Teleman, Aurelio A.
    [J]. CELL, 2014, 156 (04) : 786 - 799