A 33-GHz LNA for 5G Wireless Systems in 28-nm Bulk CMOS

被引:68
作者
Hedayati, Mahsa Keshavarz [1 ,2 ]
Abdipour, Abdolali [1 ]
Shirazi, Reza Sarraf [1 ]
Cetintepe, Cagri [2 ]
Staszewski, Robert Bogdan [2 ]
机构
[1] Amirkabir Univ Technol, Dept Elect Engn, Tehran 1591634311, Iran
[2] Univ Coll Dublin, Sch Elect & Elect Engn, D04, Dublin 4, Ireland
基金
爱尔兰科学基金会;
关键词
Low-noise amplifier (LNA); 28-nm CMOS; millimeter-wave (mm-wave); metal density rules; electromagnetic (EM) modeling; 5G cellular; system-on-chip (SoC); LOW-NOISE AMPLIFIER; WIDE-BAND LNA; DESIGN; GAIN;
D O I
10.1109/TCSII.2018.2859187
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief presents a design procedure of a compact 33-GHz low-noise amplifier (LNA) for fifth generation (5G) applications realized in 28-nm LP CMOS. Based on the unique set of challenges presented by advanced nanoscale CMOS, the emphasis is put here on the optimization of design and layout techniques for active and passive components in the presence of rigorous metal density rules and other back-end-of-the-line challenges. All passive components are designed and optimized with full-wave electromagnetic simulations for a high quality factor. In addition, layout techniques help to miniaturize the total area as the suggested 5G frequency band of 33 GHz is not high enough to provide a sufficiently compact chip size. The resulting increase in the concentration of required metal fills furthermore makes this optimization more challenging. The fabricated LNA consists of two cascode stages with a total core area of 0.68x0.34 mm(2). It exhibits 4.9-dB noise figure and 18.6-dB gain at 33 GHz while consuming only 9.7 mW from a 1.2-V power supply.
引用
收藏
页码:1460 / 1464
页数:5
相关论文
共 13 条
[1]   30 GHz CMOS low noise amplifier [J].
Adabi, Ehsan ;
Heydari, Babak ;
Bohsali, Mounir ;
Niknejad, Ali M. .
2007 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS (RFIC) SYMPOSIUM, DIGEST OF PAPERS, 2007, :625-+
[2]   Millimeter-Wave Low Power and Miniature CMOS Multicascode Low-Noise Amplifiers with Noise Reduction Topology [J].
Huang, Bo-Jr ;
Lin, Kun-You ;
Wang, Huei .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2009, 57 (12) :3049-3059
[3]  
Kuo F.-W., 2014, 2014 S VLSI CIRC DIG, P1, DOI [10.1109/vlsic.2014.6858393, DOI 10.1109/VLSIC.2014.6858393]
[4]   Design of Wideband LNAs Using Parallel-to-Series Resonant Matching Network Between Common-Gate and Common-Source Stages [J].
Lo, Yu-Tsung ;
Kiang, Jean-Fu .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2011, 59 (09) :2285-2294
[5]  
Onoe S, 2016, ISSCC DIG TECH PAP I, V59, P23, DOI 10.1109/ISSCC.2016.7417891
[6]   32 dB Gain 28 nm Bulk CMOS W-Band LNA [J].
Pepe, Domenico ;
Zito, Domenico .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2015, 25 (01) :55-57
[7]   Compact Wideband LNA With Gain and Input Matching Bandwidth Extensions by Transformer [J].
Qin, Pei ;
Xue, Quan .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2017, 27 (07) :657-659
[8]   Design of Wideband LNA Employing Cascaded Complimentary Common Gate and Common Source Stages [J].
Qin, Pei ;
Xue, Quan .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2017, 27 (06) :587-589
[9]  
Sanduleanu M. A. T., 2006, 2006 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium (IEEE Cat. No. 06CH37741)
[10]   Design of Low-Loss Transmission Lines in Scaled CMOS by Accurate Electromagnetic Simulations [J].
Vecchi, Federico ;
Repossi, Matteo ;
Eyssa, Wissam ;
Arcioni, Paolo ;
Svelto, Francesco .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2009, 44 (09) :2605-2615