Irreversible Conductive Filament Contacts for Passivated van der Waals Heterostructure Devices

被引:2
|
作者
Na, Youn Sung [1 ]
Shin, June-Chul [1 ]
Ji, Eunji [2 ]
Huh, Woong [3 ]
Im, Inhyuk [1 ]
Watanabe, Kenji [4 ]
Taniguchi, Takashi [5 ]
Jang, Ho Won [1 ]
Lee, Chul-Ho [3 ,6 ,7 ]
Lee, Gwan-Hyoung [1 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 08826, South Korea
[2] Yonsei Univ, Dept Mat Sci & Engn, Seoul 03722, South Korea
[3] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
[4] Natl Inst Mat Sci, Res Ctr Funct Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[5] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[6] Korea Univ, Dept Integrat Energy Engn, Seoul 02841, South Korea
[7] Korea Inst Sci & Technol, Adv Mat Res Div, Seoul 02792, South Korea
基金
新加坡国家研究基金会;
关键词
2D electronic devices; defect engineering; irreversible filaments; oxygen plasma; van der Waals heterostructures; MECHANISMS; TRANSPORT;
D O I
10.1002/adfm.202207351
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
2D materials with atomic-scale thickness have attracted immense interest owing to their intriguing properties, which can be useful for electronic devices. As ultrathin 2D materials are highly vulnerable to external conditions, passivation of 2D materials is required to maintain the stability of 2D electronic devices. However, 2D channels are embedded in passivation layers, making the formation of suitable contacts in passivated 2D devices challenging. Here, a novel method for fabricating irreversible conductive filament (ICF) contacts on a 2D channel passivated by hexagonal boron nitride (hBN) layers is demonstrated. Defective paths are formed in the top hBN layer of hBN-encapsulated graphene (or MoS2) using oxygen-plasma treatment, along which ICFs are fabricated by applying repetitive bias. ICF contacts formed in the combined paths of migrated metal atoms and vacancies are stable during device operation, which is in contrast with that the filaments in hBN memristors are reversible. Field-effect transistors with ICF contacts exhibit a low contact resistance and high stability. This study shows a new contact method, which has great potential for high-performance 2D electronics devices.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Mixed-Dimensional Van der Waals Heterostructure Photodetector
    Zhou, Jiaoyan
    Xie, Mingzhang
    Ji, Huan
    Cui, Anyang
    Ye, Yan
    Jiang, Kai
    Shang, Liyan
    Zhang, Jinzhong
    Hu, Zhigao
    Chu, Junhao
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (16) : 18674 - 18682
  • [42] Remote modulation doping in van der Waals heterostructure transistors
    Lee, Donghun
    Lee, Jea Jung
    Kim, Yoon Seok
    Kim, Yeon Ho
    Kim, Jong Chan
    Huh, Woong
    Lee, Jaeho
    Park, Sungmin
    Jeong, Hu Young
    Kim, Young Duck
    Lee, Chul-Ho
    NATURE ELECTRONICS, 2021, 4 (09) : 664 - 670
  • [43] Dielectric Engineering of Electronic Correlations in a van der Waals Heterostructure
    Steinleitner, Philipp
    Merkl, Philipp
    Graft, Alexander
    Nagler, Philipp
    Watanabe, Kenji
    Taniguchi, Takashi
    Zipfel, Jonas
    Schueller, Christian
    Korn, Tobias
    Chernikov, Alexey
    Brem, Samuel
    Selig, Malte
    Berghauser, Gunnar
    Malic, Ermin
    Huber, Rupert
    NANO LETTERS, 2018, 18 (02) : 1402 - 1409
  • [44] Magnetotransport and lateral confinement in an InSe van der Waals Heterostructure
    Lee, Yongjin
    Pisoni, Riccardo
    Overweg, Hiske
    Eich, Marius
    Rickhaus, Peter
    Patane, Arnalia
    Kudrynskyi, Zakhar R.
    Kovalyuk, Zakhar D.
    Gorbachev, Roman
    Watanabe, Kenji
    Taniguchi, Takashi
    Ihn, Thomas
    Ensslin, Klaus
    2D MATERIALS, 2018, 5 (03):
  • [45] Silicene/GaAs van der Waals heterostructure for optoelectronic applications
    Mubashir A. Kharadi
    Jhuma Saha
    Journal of Materials Science, 2022, 57 : 21324 - 21338
  • [46] Observation of fractional Chern insulators in a van der Waals heterostructure
    Spanton, Eric M.
    Zibrov, Alexander A.
    Zhou, Haoxin
    Taniguchi, Takashi
    Watanabe, Kenji
    Zaletel, Michael P.
    Young, Andrea F.
    SCIENCE, 2018, 360 (6384) : 62 - 66
  • [47] Manipulating Picosecond Photoresponse in van der Waals Heterostructure Photodetectors
    Zeng, Zhouxiaosong
    Ge, Cuihuan
    Braun, Kai
    Eberle, Martin
    Wang, Yufan
    Zheng, Biyuan
    Zhu, Chenguang
    Sun, Xingxia
    Huang, Lanyu
    Luo, Ziyu
    Chen, Ying
    Duan, Huigao
    Wang, Shuangyin
    Li, Dong
    Gao, Fei
    Pan, Anlian
    Wang, Xiao
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (30)
  • [48] Transport and localization of indirect excitons in a van der Waals heterostructure
    Fowler-Gerace, L. H.
    Zhou, Zhiwen
    Szwed, E. A.
    Choksy, D. J.
    Butov, L. V.
    NATURE PHOTONICS, 2024, 18 (08) : 823 - 828
  • [49] Remote modulation doping in van der Waals heterostructure transistors
    Donghun Lee
    Jea Jung Lee
    Yoon Seok Kim
    Yeon Ho Kim
    Jong Chan Kim
    Woong Huh
    Jaeho Lee
    Sungmin Park
    Hu Young Jeong
    Young Duck Kim
    Chul-Ho Lee
    Nature Electronics, 2021, 4 : 664 - 670
  • [50] Silicene/GaAs van der Waals heterostructure for optoelectronic applications
    Kharadi, Mubashir A.
    Saha, Jhuma
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (46) : 21324 - 21338