Controllability of second-order differential inclusions in Banach spaces with nonlocal conditions

被引:44
作者
Benchohra, M [1 ]
Ntouyas, SK
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Dept Math, Sidi Bel Abbes, Algeria
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
关键词
nonlocal conditions; mild solutions; evolution; controllability; fixed points;
D O I
10.1023/A:1026447232030
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we establish sufficient conditions for the controllability of second-order differential inclusions in Banach spaces with nonlocal conditions. We rely on a fixed-point theorem for condensing maps due to Martelli.
引用
收藏
页码:559 / 571
页数:13
相关论文
共 20 条
[1]  
BALACHANDRAN K, 1994, INDIAN J PURE AP MAT, V25, P411
[2]   CONTROLLABILITY OF NONLINEAR INTEGRODIFFERENTIAL-SYSTEMS IN BANACH-SPACE [J].
BALACHANDRAN, K ;
DAUER, JP ;
BALASUBRAMANIAM, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1995, 84 (01) :83-91
[3]  
Balachandran K, 1996, INDIAN J PURE AP MAT, V27, P443
[4]  
Banas J, 1980, LECT NOTES PURE APPL
[5]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505
[6]  
Deimling K., 1992, MULTIVALUED DIFFEREN, DOI DOI 10.1515/9783110874228
[7]   ORDINARY DIFFERENTIAL EQUATIONS IN LINEAR TOPOLOGICAL SPACE .2. [J].
FATTORINI, HO .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1969, 6 (01) :50-+
[8]   ORDINARY DIFFERENTIAL EQUATIONS IN LINEAR TOPOLOGICAL SPACES .I. [J].
FATTORINI, HO .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1969, 5 (01) :72-+
[9]  
Goldstein J.A, 1985, Semigroups of Linear Operators and Applications
[10]   Boundary controllability of differential equations with nonlocal condition [J].
Han, HK ;
Park, JY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 230 (01) :242-250