Parameter Estimation of Power Electronic Converters With Physics-Informed Machine Learning

被引:52
作者
Zhao, Shuai [1 ]
Peng, Yingzhou [1 ]
Zhang, Yi [1 ]
Wang, Huai [1 ]
机构
[1] Aalborg Univ, Dept Energy, DK-9220 Aalborg, Denmark
关键词
Power electronics; Buck converters; Voltage; Parameter estimation; Data models; Task analysis; Neural networks; Buck converter; deep neural network; prognostics and health management; physics-informed machine learning (PIML); condition monitoring; NEURAL-NETWORKS; IDENTIFICATION; SYSTEMS;
D O I
10.1109/TPEL.2022.3176468
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Physics-informed machine learning (PIML) has been emerging as a promising tool for applications with domain knowledge and physical models. To uncover its potentials in power electronics, this article proposes a PIML-based parameter estimation method demonstrated by a case study of dc-dc Buck converter. A deep neural network and the dynamic models of the converter are seamlessly coupled. It overcomes the challenges related to training data, accuracy, and robustness which a typical data-driven approach has. This exemplary application envisions to provide a new perspective for tailoring existing machine learning tools for power electronics.
引用
收藏
页码:11567 / 11578
页数:12
相关论文
共 28 条
[1]   Advances on System Identification Techniques for DC-DC Switch Mode Power Converter Applications [J].
Al-Greer, Maher ;
Armstrong, Matthew ;
Ahmeid, Mohamed ;
Giaouris, Damian .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2019, 34 (07) :6973-6990
[2]   Identification and Robust Control of DC/DC Converter Hammerstein Model [J].
Alonge, Francesco ;
D'Ippolito, Filippo ;
Cangemi, Tornmaso .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2008, 23 (06) :2990-3003
[3]  
Garaj M., 2018, PROC IEEE ENERGY CON, P1
[4]   SciANN: A Keras/TensorFlow wrapper for scientific computations and physics-informed deep learning using artificial neural networks [J].
Haghighat, Ehsan ;
Juanes, Ruben .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 373
[5]  
Hennigh O., 2020, PROC INT C COMPUT SC, P447
[6]  
Iserles A., 2009, A First Course in the Numerical Analysis of Differential Equations
[7]  
Kamel T, 2015, CAN CON EL COMP EN, P663, DOI 10.1109/CCECE.2015.7129353
[8]   Physics-informed machine learning [J].
Karniadakis, George Em ;
Kevrekidis, Ioannis G. ;
Lu, Lu ;
Perdikaris, Paris ;
Wang, Sifan ;
Yang, Liu .
NATURE REVIEWS PHYSICS, 2021, 3 (06) :422-440
[9]   Artificial neural networks for solving ordinary and partial differential equations [J].
Lagaris, IE ;
Likas, A ;
Fotiadis, DI .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (05) :987-1000
[10]   Low Sampling Rate Online Parameters Monitoring of DC-DC Converters for Predictive-Maintenance Using Biogeography-Based Optimization [J].
Li, B. X. ;
Low, K. S. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2016, 31 (04) :2870-2879