L2-stability analysis of novel ETD scheme for Kuramoto-Sivashinsky equations

被引:0
作者
Vaissmoradi, N. [1 ]
Malek, A. [1 ]
Momeni-Masuleh, S. H. [2 ]
机构
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Appl Math, Tehran, Iran
[2] Shahed Univ, Dept Math, Tehran, Iran
关键词
Spectral Galerkin methods; Asymptotic stability; Nonlinear stiff PDEs; Kuramoto-Sivashinsky equation; Exponential time differencing; Truncation error; NONLINEAR-WAVE EQUATIONS; RUNGE-KUTTA METHODS; TIME; DISCRETIZATION;
D O I
10.1016/j.cam.2010.03.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the stability analysis of novel ETD scheme proposed by the authors based on spectral methods, the exponential time differencing and Taylor expansion. Stability issue of the proposed numerical scheme is related to an analysis of the stability of the corresponding ODE system for time marching approach. It is proved that the novel scheme is L-2-stable in solving the Kuramoto-Sivashinsky model problems. The truncation error and the stability region for the novel scheme are provided. Comparisons with available literature are made. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2493 / 2500
页数:8
相关论文
共 18 条
[1]   Implicit-explicit multistep methods for quasilinear parabolic equations [J].
Akrivis, G ;
Crouzeix, M ;
Makridakis, C .
NUMERISCHE MATHEMATIK, 1999, 82 (04) :521-541
[2]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[3]   Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations [J].
Ascher, UM ;
Ruuth, SJ ;
Spiteri, RJ .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :151-167
[4]   A new class of time discretization schemes for the solution of nonlinear PDEs [J].
Beylkin, G ;
Keiser, JM ;
Vozovoi, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (02) :362-387
[5]   High-order multi-implicit spectral deferred correction methods for problems of reactive flow [J].
Bourlioux, A ;
Layton, AT ;
Minion, ML .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 189 (02) :651-675
[6]   Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations [J].
Calvo, MP ;
de Frutos, J ;
Novo, J .
APPLIED NUMERICAL MATHEMATICS, 2001, 37 (04) :535-549
[7]   Applications of semi-implicit Fourier-spectral method to phase field equations [J].
Chen, LQ ;
Shen, J .
COMPUTER PHYSICS COMMUNICATIONS, 1998, 108 (2-3) :147-158
[8]   Exponential time differencing for stiff systems [J].
Cox, SM ;
Matthews, PC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 176 (02) :430-455
[9]   Analysis and applications of the exponential time differencing schemes and their contour integration modifications [J].
Du, Q ;
Zhu, WX .
BIT NUMERICAL MATHEMATICS, 2005, 45 (02) :307-328
[10]  
Du Q, 2004, J COMPUT MATH, V22, P200