A LICHNEROWICZ ESTIMATE FOR THE SPECTRAL GAP OF A SUB-LAPLACIAN

被引:1
作者
Berge, Stine Marie [1 ]
Grong, Erlend [2 ,3 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
[2] Univ Paris Saclay, Univ Paris Sud, Lab Signaux & Syst L2S Supelec, CNRS, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
[3] Univ Bergen, Dept Math, POB 7803, N-5020 Bergen, Norway
关键词
Spectral gap; Lichnerowicz estimate; sub-Laplacian; RIEMANNIAN MANIFOLDS; 1ST EIGENVALUE; INEQUALITIES; POINCARE; SOBOLEV; THEOREM;
D O I
10.1090/proc/14223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a second order operator on a compact manifold satisfying the strong Hormander condition, we give a bound for the spectral gap analogous to the Lichnerowicz estimate for the Laplacian of a Riemannian manifold. We consider a wide class of such operators which includes horizontal lifts of the Laplacian on Riemannian submersions with minimal leaves.
引用
收藏
页码:5153 / 5166
页数:14
相关论文
共 14 条