A LICHNEROWICZ ESTIMATE FOR THE SPECTRAL GAP OF A SUB-LAPLACIAN

被引:1
作者
Berge, Stine Marie [1 ]
Grong, Erlend [2 ,3 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
[2] Univ Paris Saclay, Univ Paris Sud, Lab Signaux & Syst L2S Supelec, CNRS, 3 Rue Joliot Curie, F-91192 Gif Sur Yvette, France
[3] Univ Bergen, Dept Math, POB 7803, N-5020 Bergen, Norway
关键词
Spectral gap; Lichnerowicz estimate; sub-Laplacian; RIEMANNIAN MANIFOLDS; 1ST EIGENVALUE; INEQUALITIES; POINCARE; SOBOLEV; THEOREM;
D O I
10.1090/proc/14223
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a second order operator on a compact manifold satisfying the strong Hormander condition, we give a bound for the spectral gap analogous to the Lichnerowicz estimate for the Laplacian of a Riemannian manifold. We consider a wide class of such operators which includes horizontal lifts of the Laplacian on Riemannian submersions with minimal leaves.
引用
收藏
页码:5153 / 5166
页数:14
相关论文
共 14 条
[1]   The Lichnerowicz-Obata Theorem on Sub-Riemannian Manifolds with Transverse Symmetries [J].
Baudoin, Fabrice ;
Kim, Bumsik .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) :156-170
[2]   Sobolev, Poincare, and isoperimetric inequalities for subelliptic diffusion operators satisfying a generalized curvature dimension inequality [J].
Baudoin, Fabrice ;
Kim, Bumsik .
REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (01) :109-131
[3]   Log-Sobolev inequalities for subelliptic operators satisfying a generalized curvature dimension inequality [J].
Baudoin, Fabrice ;
Bonnefont, Michel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (06) :2646-2676
[4]  
Fefferman C., 1983, WADSWORTH MATH SER, VI, P590
[5]   THE 1ST EIGENVALUE OF A SUBLAPLACIAN ON A PSEUDOHERMITIAN MANIFOLD [J].
GREENLEAF, A .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1985, 10 (02) :191-217
[6]   Stochastic Completeness and Gradient Representations for Sub-Riemannian Manifolds [J].
Grong, Erlend ;
Thalmaier, Anton .
POTENTIAL ANALYSIS, 2019, 51 (02) :219-254
[7]   Curvature-dimension inequalities on sub-Riemannian manifolds obtained from Riemannian foliations: part I [J].
Grong, Erlend ;
Thalmaier, Anton .
MATHEMATISCHE ZEITSCHRIFT, 2016, 282 (1-2) :99-130
[8]  
Grong E, 2016, MATH Z, V282, P131, DOI 10.1007/s00209-015-1535-3
[9]   HYPOELLIPTIC 2ND ORDER DIFFERENTIAL EQUATIONS [J].
HORMANDE.L .
ACTA MATHEMATICA UPPSALA, 1967, 119 (3-4) :147-&
[10]   The Sharp Lower Bound of the First Eigenvalue of the Sub-Laplacian on a Quaternionic Contact Manifold [J].
Ivanov, S. ;
Petkov, A. ;
Vassilev, D. .
JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (02) :756-778