On Vector Measures, Uniform Integrability and Orlicz Spaces

被引:0
作者
Barcenas, Diomedes [1 ]
Finol, Carlos E. [2 ]
机构
[1] Univ Los Andes, Dept Matemat, Merida 5101, Venezuela
[2] Cent Univ Venezuela, Escuela Matemat, Caracas, Venezuela
来源
VECTOR MEASURES, INTEGRATION AND RELATED TOPICS | 2010年 / 201卷
关键词
Vector measures; Pettis integral; Orlicz spaces;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a Banach space X and a probability space (Omega, Sigma, mu), we characterize the countable additivity of the Dunford integral for Dunford integrable functions taking values in X as those weakly measurable functions f : Omega -> X for which {x* f : x* is an element of B-X*} is relatively weakly compact in some separable Orlicz space L-phi(mu). We also provide a characterization of the Pettis integral of Dunford integrable functions by mean of weak compactness in separable Orlicz spaces and give a necessary and sufficient condition for the uniform integrability of {x f : is an element of B-X}, whenever f : Omega -> X* is Gel'fand integrable.
引用
收藏
页码:51 / +
页数:2
相关论文
共 12 条
  • [1] Albiac F, 2006, GRAD TEXTS MATH, V233, P1
  • [2] Alexopoulos J., 1994, QUAEST MATH, P231
  • [3] [Anonymous], 1961, Convex functions and Orlicz spaces
  • [4] Diestel J., 1977, VECTOR MEASURES MATH, V15
  • [5] Lindenstrauss J., 1977, CLASSICAL BANACH SPA, VI
  • [6] MEYER PA, 1966, PROBABILITES POTENTI
  • [7] Musial K., 2002, Handbook of Measure Theory, VI, P531
  • [8] MUSIAL K, 1992, TOPICS THEORY PETTIS, V23, P177
  • [9] Rao MM., 1991, THEORY ORLICZ SPACES
  • [10] SCHWABIK S, 2005, TOPICS BANACH SPACES, V10