The Application of Artificial Intelligence Technique (CNN-Alexnet) in Diagnosing COVID-19 Using Chest X-ray Images

被引:0
|
作者
Muhammed, Maryam [1 ]
Boukar, Moussa Mahamat [1 ]
Aldullahi, Saleh Elyakubu [1 ]
Dane, Senol [2 ]
机构
[1] Nile Univ Nigeria, Fac Nat & Appl Sci, Dept Comp Sci, Abuja, Nigeria
[2] Nile Univ Nigeria, Coll Hlth Sci, Fac Basic Med Sci, Dept Physiol, Abuja, Nigeria
来源
JOURNAL OF RESEARCH IN MEDICAL AND DENTAL SCIENCE | 2021年 / 9卷 / 05期
关键词
Artificial Intelligence; Deep learning; Convolutional neural networks; Pandemic; GENDER-RELATED DIFFERENCES; ALEXITHYMIA SCORES; PANDEMIC OUTBREAK; SIMIAN CREASE; SELF-ESTEEM; UNIVERSITY; DEPRESSION; EDUCATION; ANXIETY; SEX;
D O I
暂无
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background: The coronavirus which initially appeared in China in December 2019 was later declared global pandemic in the year 2020. It has caused a devastating effect on daily lives, public health, and the global economy. Early detection of positive cases is overly critical to prevent further spread of the pandemic and to quickly treat affected patients in isolation. Which is why introduction to fast and accurate alternative of diagnosing the virus is very vital. Methods: An AI technique called deep learning which is most applied to analyze visual imagery like radiological images, This AI technique uses convolutional neural networks (CNN) to analyze the images, AlexNet is the CNN model used for this research. Several studies suggest that medical images contain salient information about the Covid-19 virus, which is why applying such advanced artificial intelligence (AI) techniques coupled with radiological imaging can be helpful for the accurate detection of this disease with a huge potential to address the problem of a limited to no specialized physicians in remote areas like Nigeria's most vulnerable regions. Results: Initially, the model gave high accuracy of 97.97%, this was suspected to be overfitting. This was corrected by increasing the dataset and applying cross validation thereby reducing noise by giving a lower accuracy to 85% and also increasing its specificity. Conclusions: The aim of the study was to introduce an alternative way of diagnosing the Covid-19 asides from the PCR that is currently the most popular one, this has been archived by our working system and the waiting time has been reduced from 24-48hours to 58 minutes. Secondly, to identify a suitable model in Deep learning in medical science and to measure the performance and to access the effectiveness of the chosen model Alexnet in terms of accuracy, precision, recall &F1score. We archived this by striking a balance in the high percentile number of the following terms and reducing it to a more believable, reliable, and accurate figure.
引用
收藏
页码:21 / 26
页数:6
相关论文
共 50 条
  • [41] Identification of COVID-19 with Chest X-ray Images using Deep Learning
    Khandar, Punam
    Thaokar, Chetana
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2021, 12 (05): : 694 - 700
  • [42] Fast COVID-19 and Pneumonia Classification Using Chest X-ray Images
    Lujan-Garcia, Juan Eduardo
    Moreno-Ibarra, Marco Antonio
    Villuendas-Rey, Yenny
    Yanez-Marquez, Cornelio
    MATHEMATICS, 2020, 8 (09)
  • [43] DeepCOVNet Model for COVID-19 Detection Using Chest X-Ray Images
    Bhattacharjee, Vandana
    Priya, Ankita
    Kumari, Nandini
    Anwar, Shamama
    WIRELESS PERSONAL COMMUNICATIONS, 2023, 130 (02) : 1399 - 1416
  • [44] Application of Deep Learning model (DeepCOVID-19) for detecting COVID-19 cases using chest X-ray images
    Cuong Do
    Lan Vu
    APPLICATIONS OF MACHINE LEARNING 2020, 2020, 11511
  • [45] Advance Warning Methodologies for COVID-19 Using Chest X-Ray Images
    Ahishali, Mete
    Degerli, Aysen
    Yamac, Mehmet
    Kiranyaz, Serkan
    Chowdhury, Muhammad E. H.
    Hameed, Khalid
    Hamid, Tahir
    Mazhar, Rashid
    Gabbouj, Moncef
    IEEE ACCESS, 2021, 9 : 41052 - 41065
  • [46] Diagnosis of Covid-19 using Chest X-ray Images using Ensemble Model
    Uma, K. V.
    Birundha, C. Sakthi
    Subasri, S.
    Harini, V. A.
    IETE JOURNAL OF RESEARCH, 2024, 70 (03) : 2591 - 2601
  • [47] Explainability Of Artificial Intelligence For Diagnosing COVID-19 From Chest X-Rays
    Goel, Abhishek
    Jogi, Sandeep Panwar
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 598 - 603
  • [48] COVID-19 Cases Detection from Chest X-Ray Images using CNN based Deep Learning Model
    Islam, Md Amirul
    Stea, Giovanni
    Mahmud, Sultan
    Rahman, Kh Mustafizur
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (05) : 960 - 971
  • [49] Using Artificial Intelligence and X-ray Images to Train and Predict COVID-19 and Pneumonia: Tool for Diagnosis and Treatment
    Juarez-Gonzalez, Bryan
    Villalba-Meneses, Fernando
    Cruz-Varela, Jonathan
    Tirado-Espin, Andres
    Vizcaino-Imacana, Paulina
    Cadena-Morejon, Carolina
    Guevara, Cesar
    Almeida-Galarraga, Diego
    INFORMATION AND COMMUNICATION TECHNOLOGIES, TICEC 2024, 2025, 2273 : 39 - 56
  • [50] A comparison between CNN and combined CNN-LSTM for chest X-ray based COVID-19 detection
    Fachrela, Julio
    Pravitasaria, Anindya Apriliyanti
    Yulitab, Intan Nurma
    Ardhisasmitac, Mulya Nurmansyah
    Indrayatnaa, Fajar
    DECISION SCIENCE LETTERS, 2023, 12 (02) : 199 - 210