The Application of Artificial Intelligence Technique (CNN-Alexnet) in Diagnosing COVID-19 Using Chest X-ray Images

被引:0
|
作者
Muhammed, Maryam [1 ]
Boukar, Moussa Mahamat [1 ]
Aldullahi, Saleh Elyakubu [1 ]
Dane, Senol [2 ]
机构
[1] Nile Univ Nigeria, Fac Nat & Appl Sci, Dept Comp Sci, Abuja, Nigeria
[2] Nile Univ Nigeria, Coll Hlth Sci, Fac Basic Med Sci, Dept Physiol, Abuja, Nigeria
来源
JOURNAL OF RESEARCH IN MEDICAL AND DENTAL SCIENCE | 2021年 / 9卷 / 05期
关键词
Artificial Intelligence; Deep learning; Convolutional neural networks; Pandemic; GENDER-RELATED DIFFERENCES; ALEXITHYMIA SCORES; PANDEMIC OUTBREAK; SIMIAN CREASE; SELF-ESTEEM; UNIVERSITY; DEPRESSION; EDUCATION; ANXIETY; SEX;
D O I
暂无
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background: The coronavirus which initially appeared in China in December 2019 was later declared global pandemic in the year 2020. It has caused a devastating effect on daily lives, public health, and the global economy. Early detection of positive cases is overly critical to prevent further spread of the pandemic and to quickly treat affected patients in isolation. Which is why introduction to fast and accurate alternative of diagnosing the virus is very vital. Methods: An AI technique called deep learning which is most applied to analyze visual imagery like radiological images, This AI technique uses convolutional neural networks (CNN) to analyze the images, AlexNet is the CNN model used for this research. Several studies suggest that medical images contain salient information about the Covid-19 virus, which is why applying such advanced artificial intelligence (AI) techniques coupled with radiological imaging can be helpful for the accurate detection of this disease with a huge potential to address the problem of a limited to no specialized physicians in remote areas like Nigeria's most vulnerable regions. Results: Initially, the model gave high accuracy of 97.97%, this was suspected to be overfitting. This was corrected by increasing the dataset and applying cross validation thereby reducing noise by giving a lower accuracy to 85% and also increasing its specificity. Conclusions: The aim of the study was to introduce an alternative way of diagnosing the Covid-19 asides from the PCR that is currently the most popular one, this has been archived by our working system and the waiting time has been reduced from 24-48hours to 58 minutes. Secondly, to identify a suitable model in Deep learning in medical science and to measure the performance and to access the effectiveness of the chosen model Alexnet in terms of accuracy, precision, recall &F1score. We archived this by striking a balance in the high percentile number of the following terms and reducing it to a more believable, reliable, and accurate figure.
引用
收藏
页码:21 / 26
页数:6
相关论文
共 50 条
  • [1] Diagnosing COVID-19 in X-ray Images Using HOG Image Feature and Artificial Intelligence Classifiers
    Kharbat, Faten F.
    Elamsy, Tarik A.
    Hamada, Nuha H.
    ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2020,
  • [2] COVID-19 Detection on Chest X-ray Images with the Proposed Model Using Artificial Intelligence and Classifiers
    Muhammed Yildirim
    Orkun Eroğlu
    Yeşim Eroğlu
    Ahmet Çinar
    Emine Cengil
    New Generation Computing, 2022, 40 : 1077 - 1091
  • [3] COVID-19 Detection on Chest X-ray Images with the Proposed Model Using Artificial Intelligence and Classifiers
    Yildirim, Muhammed
    Eroglu, Orkun
    Eroglu, Yesim
    Cinar, Ahmet
    Cengil, Emine
    NEW GENERATION COMPUTING, 2022, 40 (04) : 1077 - 1091
  • [4] A Novel Method for COVID-19 Diagnosis Using Artificial Intelligence in Chest X-ray Images
    Almalki, Yassir Edrees
    Qayyum, Abdul
    Irfan, Muhammad
    Haider, Noman
    Glowacz, Adam
    Alshehri, Fahad Mohammed
    Alduraibi, Sharifa K.
    Alshamrani, Khalaf
    Basha, Mohammad Abd Alkhalik
    Alduraibi, Alaa
    Saeed, M. K.
    Rahman, Saifur
    HEALTHCARE, 2021, 9 (05)
  • [5] COVID-19 Detection in Chest X-ray Images Using a New Channel Boosted CNN
    Khan, Saddam Hussain
    Sohail, Anabia
    Khan, Asifullah
    Lee, Yeon-Soo
    DIAGNOSTICS, 2022, 12 (02)
  • [6] Current limitations to identify COVID-19 using artificial intelligence with chest X-ray imaging
    José Daniel López-Cabrera
    Rubén Orozco-Morales
    Jorge Armando Portal-Diaz
    Orlando Lovelle-Enríquez
    Marlén Pérez-Díaz
    Health and Technology, 2021, 11 : 411 - 424
  • [7] Current limitations to identify COVID-19 using artificial intelligence with chest X-ray imaging
    Daniel Lopez-Cabrera, Jose
    Orozco-Morales, Ruben
    Armando Portal-Diaz, Jorge
    Lovelle-Enriquez, Orlando
    Perez-Diaz, Marlen
    HEALTH AND TECHNOLOGY, 2021, 11 (02) : 411 - 424
  • [8] Robust Technique to Detect COVID-19 using Chest X-ray Images
    Channa, Asma
    Popescu, Nirvana
    Malik, Najeeb Ur Rehman
    2020 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB), 2020,
  • [9] Artificial Intelligence Based COVID-19 Detection and Classification Model on Chest X-ray Images
    Althaqafi, Turki
    AL-Ghamdi, Abdullah S. AL-Malaise
    Ragab, Mahmoud
    HEALTHCARE, 2023, 11 (09)
  • [10] A dataset of COVID-19 x-ray chest images
    Fraiwan, Mohammad
    Khasawneh, Natheer
    Khassawneh, Basheer
    Ibnian, Ali
    DATA IN BRIEF, 2023, 47