Transgene and Chemical Transdifferentiation of Somatic Cells for Rapid and Efficient Neurological Disease Cell Models

被引:9
作者
Ng, Neville [1 ,2 ]
Newbery, Michelle [1 ,2 ]
Maksour, Simon [1 ,3 ]
Dottori, Mirella [1 ,3 ]
Sluyter, Ronald [1 ,2 ]
Ooi, Lezanne [1 ,2 ]
机构
[1] Illawarra Hlth & Med Res Inst, Wollongong, NSW, Australia
[2] Univ Wollongong, Sch Chem & Mol Biosci & Mol Horizons, Wollongong, NSW, Australia
[3] Univ Wollongong, Sch Med Indigenous & Hlth Sci, Wollongong, NSW, Australia
基金
英国医学研究理事会;
关键词
transdifferentiation; reprogramming; differentiation; neurodegeneration; transcription factors; aging; IN-VITRO TRANSDIFFERENTIATION; BLOOD MONONUCLEAR-CELLS; HUMAN FIBROBLASTS; DIRECT CONVERSION; STEM-CELLS; MOTOR-NEURONS; ASTROCYTE DIFFERENTIATION; PARKINSONS-DISEASE; FUNCTIONAL-NEURONS; PROGENITOR CELLS;
D O I
10.3389/fncel.2022.858432
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
For neurological diseases, molecular and cellular research relies on the use of model systems to investigate disease processes and test potential therapeutics. The last decade has witnessed an increase in the number of studies using induced pluripotent stem cells to generate disease relevant cell types from patients. The reprogramming process permits the generation of a large number of cells but is potentially disadvantaged by introducing variability in clonal lines and the removal of phenotypes of aging, which are critical to understand neurodegenerative diseases. An under-utilized approach to disease modeling involves the transdifferentiation of aged cells from patients, such as fibroblasts or blood cells, into various neural cell types. In this review we discuss techniques used for rapid and efficient direct conversion to neural cell types. We examine the limitations and future perspectives of this rapidly advancing field that could improve neurological disease modeling and drug discovery.
引用
收藏
页数:9
相关论文
共 76 条
[1]   Telomere length and iPSC re-programming: survival of the longest [J].
Allsopp, Richard .
CELL RESEARCH, 2012, 22 (04) :614-615
[2]   Validation of Induced Microglia-Like Cells (iMG Cells) for Future Studies of Brain Diseases [J].
Banerjee, Atoshi ;
Lu, Yimei ;
Do, Kenny ;
Mize, Travis ;
Wu, Xiaogang ;
Chen, Xiangning ;
Chen, Jingchun .
FRONTIERS IN CELLULAR NEUROSCIENCE, 2021, 15
[3]   Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors [J].
Bar-Nur, Ori ;
Gerli, Mattia F. M. ;
Di Stefano, Bruno ;
Almada, Albert E. ;
Galvin, Amy ;
Coffey, Amy ;
Huebner, Aaron J. ;
Feige, Peter ;
Verheul, Cassandra ;
Cheung, Priscilla ;
Payzin-Dogru, Duygu ;
Paisant, Sylvain ;
Anselmo, Anthony ;
Sadreyev, Ruslan I. ;
Ott, Harald C. ;
Tajbakhsh, Shahragim ;
Rudnicki, Michael A. ;
Wagers, Amy J. ;
Hochedlinger, Konrad .
STEM CELL REPORTS, 2018, 10 (05) :1505-1521
[4]   A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture [J].
Beers, Jeanette ;
Linask, Kaari L. ;
Chen, Jane A. ;
Siniscalchi, Lauren I. ;
Lin, Yongshun ;
Zheng, Wei ;
Rao, Mahendra ;
Chen, Guokai .
SCIENTIFIC REPORTS, 2015, 5
[5]   Direct Conversion of Fibroblasts into Functional Astrocytes by Defined Transcription Factors [J].
Caiazzo, Massimiliano ;
Giannelli, Serena ;
Valente, Pierluigi ;
Lignani, Gabriele ;
Carissimo, Annamaria ;
Sessa, Alessandro ;
Colasante, Gaia ;
Bartolomeo, Rosa ;
Massimino, Luca ;
Ferroni, Stefano ;
Settembre, Carmine ;
Benfenati, Fabio ;
Broccoli, Vania .
STEM CELL REPORTS, 2015, 4 (01) :25-36
[6]   Rapid and efficient induction of functional astrocytes from human pluripotent stem cells [J].
Canals, Isaac ;
Ginisty, Aurelie ;
Quist, Ella ;
Timmerman, Raissa ;
Fritze, Jonas ;
Miskinyte, Giedre ;
Monni, Emanuela ;
Hansen, Marita G. ;
Hidalgo, Isabel ;
Bryder, David ;
Bengzon, Johan ;
Ahlenius, Henrik .
NATURE METHODS, 2018, 15 (09) :693-+
[7]   Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson's disease model [J].
Cervo, Pia Rivetti di Val ;
Romanov, Roman A. ;
Spigolon, Giada ;
Masini, Debora ;
Martin-Montanez, Elisa ;
Toledo, Enrique M. ;
La Manno, Gioele ;
Feyder, Michael ;
Pifl, Christian ;
Ng, Yi-Han ;
Sanchez, Sara Padrell ;
Linnarsson, Sten ;
Wernig, Marius ;
Harkany, Tibor ;
Fisone, Gilberto ;
Arenas, Ernest .
NATURE BIOTECHNOLOGY, 2017, 35 (05) :444-+
[8]   One-step Reprogramming of Human Fibroblasts into Oligodendrocyte-like Cells by SOX10, OLIG2, and NKX6.2 [J].
Chanoumidou, Konstantina ;
Hernandez-Rodriguez, Benjamin ;
Windener, Farina ;
Thomas, Christian ;
Stehling, Martin ;
Mozafari, Sabah ;
Albrecht, Stefanie ;
Ottoboni, Linda ;
Antel, Jack ;
Kim, Kee-Pyo ;
Velychko, Sergiy ;
Cui, Qiao Ling ;
Xu, Yu Kang T. ;
Martino, Gianvito ;
Winkler, Jurgen ;
Scholer, Hans R. ;
Baron-Van Evercooren, Anne ;
Boespflug-Tanguy, Odile ;
Vaquerizas, Juan M. ;
Ehrlich, Marc ;
Kuhlmann, Tanja .
STEM CELL REPORTS, 2021, 16 (04) :771-783
[9]   Generation of neural progenitor cells by chemical cocktails and hypoxia [J].
Cheng, Lin ;
Hu, Wenxiang ;
Qiu, Binlong ;
Zhao, Jian ;
Yu, Yongchun ;
Guan, Wuqiang ;
Wang, Min ;
Yang, Wuzhou ;
Pei, Gang .
CELL RESEARCH, 2014, 24 (06) :665-679
[10]  
Chung Thomas DY., 2015, In Vitro and In Vivo Assessment of ADME and PK Properties During Lead Selection and Lead Optimization-Guidelines, Benchmarks and Rules of Thumb