Quadrotor UAV Trajectory Tracking Control based on ASMC and Improved ARDC

被引:3
作者
Jia, Ruru [1 ]
Zong, Xiaofeng [1 ]
机构
[1] China Univ Geosci, Sch Automat, Hubei Key Lab Adv Control & Intelligent Automat C, Engn Res Ctr Intelligent Technol Geoexplorat,Mini, Wuhan 430074, Peoples R China
来源
2020 CHINESE AUTOMATION CONGRESS (CAC 2020) | 2020年
基金
中国国家自然科学基金;
关键词
trajectory tracking; quadrotor UAV; ASMC; improved ADRC; higher-order sliding modes observer;
D O I
10.1109/CAC51589.2020.9327875
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a new double closed-loop control method for trajectory tracking of quadrotor unmanned aerial vehicles (UAV) is proposed to attenuate wind gusts disturbance and effects of parameter uncertainties. The dynamics and kinematics equations of the quadrotor UAV are established by the Euler and Newton theorem. In the outer loop subsystem, the adaptive sliding mode control (ASMC) algorithm is proposed to estimate the payload variation and air disturbance, and it can realize the stable tracking of the target position. For the inner loop subsystem, this paper designs an improved active disturbance rejection control (ADRC), which replaces the extended state observer with a higher-order sliding modes observer, and improves nonlinear state error feedback by a new nonlinear functions. Simulation experiments are given to evaluate the robustness and effectiveness of the designed controller algorithm.
引用
收藏
页码:6078 / 6083
页数:6
相关论文
共 20 条
  • [1] [Anonymous], 1998, CONTROL DECISION
  • [2] Quadrotor vehicle control via sliding mode controller driven by sliding mode disturbance observer
    Besnard, Lenaick
    Shtessel, Yuri B.
    Landrum, Brian
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (02): : 658 - 684
  • [3] Modeling and Adaptive Flight Control for Quadrotor Trajectory Tracking
    Bouadi, Hakim
    Mora-Camino, F.
    [J]. JOURNAL OF AIRCRAFT, 2018, 55 (02): : 666 - 681
  • [4] Quadrotor trajectory tracking and obstacle avoidance by chaotic grey wolf optimization-based active disturbance rejection control
    Cai, Zhihao
    Lou, Jiang
    Zhao, Jiang
    Wu, Kun
    Liu, Ningjun
    Wang, Ying Xun
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 128 : 636 - 654
  • [5] A high-performance flight control approach for quadrotors using a modified active disturbance rejection technique
    Dong, Wei
    Gu, Guo-Ying
    Zhu, Xiangyang
    Ding, Han
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 83 : 177 - 187
  • [6] From PID to Active Disturbance Rejection Control
    Han, Jingqing
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (03) : 900 - 906
  • [7] Housny H, 2019, 2019 8TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC'19), P27, DOI [10.1109/ICSC47195.2019.8950659, 10.1109/icsc47195.2019.8950659]
  • [8] Adaptive fault tolerant control for trajectory tracking of a quadrotor helicopter
    Li, Min
    Zuo, Zongyu
    Liu, Hao
    Liu, Cunjia
    Zhu, Bing
    [J]. TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2018, 40 (12) : 3560 - 3569
  • [9] Luque-Vega LF, 2014, IEEE MEDITERR ELECT, P393, DOI 10.1109/MELCON.2014.6820566
  • [10] Control of Multiple UAVs for Persistent Surveillance: Algorithm and Flight Test Results
    Nigam, Nikhil
    Bieniawski, Stefan
    Kroo, Ilan
    Vian, John
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2012, 20 (05) : 1236 - 1251