Structure formation in dark matter particle production cosmology

被引:1
作者
Safari, Z. [1 ]
Rezazadeh, K. [2 ]
Malekolkalami, B. [1 ]
机构
[1] Univ Kurdistan, Dept Phys, Pasdaran St,POB 66177-15175, Sanandaj, Iran
[2] Inst Res Fundamental Sci IPM, Sch Phys, POB 19395-5531, Tehran, Iran
来源
PHYSICS OF THE DARK UNIVERSE | 2022年 / 37卷
关键词
Gravitational particle production; Large-scale structure formation; Cosmological constraints; Growth factor; Non-equilibrium thermodynamics; REDSHIFT-SPACE DISTORTIONS; DR14 QUASAR SAMPLE; BARYON ACOUSTIC-OSCILLATIONS; MAIN GALAXY SAMPLE; GROWTH-RATE; SURVEY VIPERS; HUBBLE PARAMETER; POWER SPECTRUM; CONSTRAINTS; CREATION;
D O I
10.1016/j.dark.2022.101092
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate a cosmological scenario in which the dark matter particles can be created during the evolution of the Universe. By regarding the Universe as an open thermodynamic system and using non-equilibrium thermodynamics, we examine the mechanism of gravitational particle production. In this setup, we study the large-scale structure (LSS) formation of the Universe in the Newtonian regime of perturbations and derive the equations governing the evolution of the dark matter overdensities. Then, we implement the cosmological data from Planck 2018 CMB measurements, SNe Ia and BAO observations, as well as the Riess et al. (2019) local measurement for H-0 to provide some cosmological constraints for the parameters of our model. We see that the best case of our scenario (chi(2)(tot) = 3834.40) fits the observational data better than the baseline Lambda CDM model (chi(2)(tot) = 3838.00) at the background level. We moreover estimate the growth factor of linear perturbations and show that the best case of our model (chi(2)(f sigma 8) = 39.85) fits the LSS data significantly better than the Lambda CDM model (chi(2)(f sigma 8) = 45.29). Consequently, our model also makes a better performance at the level of the linear perturbations compared to the standard cosmological model. Although the improvement in chi(tot) for Model 2 compared to Lambda CDM at the background level may arise somewhat from the additional degree of freedom, the better consistency of this model at the level of linear perturbations results mainly from the impact of particle production on the sound speed at low redshifts. (C) 2022 Published by Elsevier B.V.
引用
收藏
页数:13
相关论文
共 90 条
[21]   Structure formation in clustering DBI dark energy model with constant sound speed [J].
Fahimi, K. ;
Karami, K. ;
Asadzadeh, S. ;
Rezazadeh, K. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 481 (02) :2393-2406
[22]   Speed from light: growth rate and bulk flow at z ∼ 0.1 from improved SDSS DR13 photometry [J].
Feix, M. ;
Branchini, E. ;
Nusser, A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 468 (02) :1420-1425
[23]   Growth Rate of Cosmological Perturbations at z ∼ 0.1 from a New Observational Test [J].
Feix, Martin ;
Nusser, Adi ;
Branchini, Enzo .
PHYSICAL REVIEW LETTERS, 2015, 115 (01)
[24]  
Gelman A., 1992, Statistical Science, V7, P457, DOI DOI 10.1214/SS/1177011136
[25]  
Gil-Marin H., 2018, MON NOT R ASTRON SOC, V477, P1604
[26]   The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies [J].
Gil-Marin, Hector ;
Percival, Will J. ;
Verde, Licia ;
Brownstein, Joel R. ;
Chuang, Chia-Hsun ;
Kitaura, Francisco-Shu ;
Rodriguez-Torres, Sergio A. ;
Olmstead, Matthew D. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 465 (02) :1757-1788
[27]  
Grib A. A., 1980, QUANTUM EFFECTS STRO
[28]   Inflationary cosmology and thermodynamics [J].
Gunzig, E ;
Maartens, R ;
Nesteruk, AV .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (04) :923-932
[29]   The VIMOS Public Extragalactic Redshift Survey Measuring the growth rate of structure around cosmic voids [J].
Hawken, A. J. ;
Granett, B. R. ;
Iovino, A. ;
Guzzo, L. ;
Peacock, J. A. ;
de la Torre, S. ;
Garilli, B. ;
Bolzonella, M. ;
Scodeggio, M. ;
Abbas, U. ;
Adami, C. ;
Bottini, D. ;
Cappi, A. ;
Cucciati, O. ;
Davidzon, I. ;
Fritz, A. ;
Franzetti, P. ;
Krywult, J. ;
Le Brun, V. ;
Le Fevre, O. ;
Maccagni, D. ;
Malek, K. ;
Marulli, F. ;
Polletta, M. ;
Pollo, A. ;
Tasca, L. A. M. ;
Tojeiro, R. ;
Vergani, D. ;
Zanichelli, A. ;
Arnouts, S. ;
Bel, J. ;
Branchini, E. ;
De Lucia, G. ;
Ilbert, O. ;
Moscardini, L. ;
Percival, W. J. .
ASTRONOMY & ASTROPHYSICS, 2017, 607
[30]   PARTICLE CREATION BY BLACK-HOLES [J].
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 43 (03) :199-220