Deep learning-based transcriptome data classification for drug-target interaction prediction

被引:61
作者
Xie, Lingwei [1 ]
He, Song [2 ]
Song, Xinyu [2 ]
Bo, Xiaochen [2 ]
Zhang, Zhongnan [1 ]
机构
[1] Xiamen Univ, Xiamen 361005, Peoples R China
[2] Beijing Inst Radiat Med, Beijing 100850, Peoples R China
关键词
Drug-target interaction; Deep learning; LINCS project; Transcriptome data; NETWORKS;
D O I
10.1186/s12864-018-5031-0
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The ability to predict the interaction of drugs with target proteins is essential to research and development of drug. However, the traditional experimental paradigm is costly, and previous in silico prediction paradigms have been impeded by the wide range of data platforms and data scarcity. Results: In this paper, we modeled the prediction of drug-target interactions as a binary classification task. Using transcriptome data from the L1000 database of the LINCS project, we developed a framework based on a deep-learning algorithm to predict potential drug target interactions. Once fully trained, the model achieved over 98% training accuracy. The results of our research demonstrated that our framework could discover more reliable DTIs than found by other methods. This conclusion was validated further across platforms with a high percentage of overlapping interactions. Conclusions: Our model's capacity of integrating transcriptome data from drugs and genes strongly suggests the strength of its potential for DTI prediction, thereby improving the drug discovery process.
引用
收藏
页数:10
相关论文
共 20 条
[1]   Supervised prediction of drug-target interactions using bipartite local models [J].
Bleakley, Kevin ;
Yamanishi, Yoshihiro .
BIOINFORMATICS, 2009, 25 (18) :2397-2403
[2]   Drug target identification using side-effect similarity [J].
Campillos, Monica ;
Kuhn, Michael ;
Gavin, Anne-Claude ;
Jensen, Lars Juhl ;
Bork, Peer .
SCIENCE, 2008, 321 (5886) :263-266
[3]   The BioGRID interaction database: 2015 update [J].
Chatr-aryamontri, Andrew ;
Breitkreutz, Bobby-Joe ;
Oughtred, Rose ;
Boucher, Lorrie ;
Heinicke, Sven ;
Chen, Daici ;
Stark, Chris ;
Breitkreutz, Ashton ;
Kolas, Nadine ;
O'Donnell, Lara ;
Reguly, Teresa ;
Nixon, Julie ;
Ramage, Lindsay ;
Winter, Andrew ;
Sellam, Adnane ;
Chang, Christie ;
Hirschman, Jodi ;
Theesfeld, Chandra ;
Rust, Jennifer ;
Livstone, Michael S. ;
Dolinski, Kara ;
Tyers, Mike .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D470-D478
[4]   Gene expression inference with deep learning [J].
Chen, Yifei ;
Li, Yi ;
Narayan, Rajiv ;
Subramanian, Aravind ;
Xie, Xiaohui .
BIOINFORMATICS, 2016, 32 (12) :1832-1839
[5]   The Comparative Toxicogenomics Database: update 2013 [J].
Davis, Allan Peter ;
Murphy, Cynthia Grondin ;
Johnson, Robin ;
Lay, Jean M. ;
Lennon-Hopkins, Kelley ;
Saraceni-Richards, Cynthia ;
Sciaky, Daniela ;
King, Benjamin L. ;
Rosenstein, Michael C. ;
Wiegers, Thomas C. ;
Mattingly, Carolyn J. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D1104-D1114
[6]   Exploiting drug-disease relationships for computational drug repositioning [J].
Dudley, Joel T. ;
Deshpande, Tarangini ;
Butte, Atul J. .
BRIEFINGS IN BIOINFORMATICS, 2011, 12 (04) :303-311
[7]   SuperTarget and Matador:: resources for exploring drug-target relationships [J].
Guenther, Stefan ;
Kuhn, Michael ;
Dunkel, Mathias ;
Campillos, Monica ;
Senger, Christian ;
Petsalaki, Evangelia ;
Ahmed, Jessica ;
Urdiales, Eduardo Garcia ;
Gewiess, Andreas ;
Jensen, Lars Juhl ;
Schneider, Reinhard ;
Skoblo, Roman ;
Russell, Robert B. ;
Bourne, Philip E. ;
Bork, Peer ;
Preissner, Robert .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D919-D922
[8]  
Klikova K, 2016, Klin Onkol, V29, P29
[9]   STITCH 3: zooming in on protein-chemical interactions [J].
Kuhn, Michael ;
Szklarczyk, Damian ;
Franceschini, Andrea ;
von Mering, Christian ;
Jensen, Lars Juhl ;
Bork, Peer .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D876-D880
[10]  
Kutner MichaelH., 2004, Technometrics, V26