Necessary optimality conditions for a bilevel multiobjective programming problem via a ψ-reformulation

被引:18
作者
Lafhim, L. [1 ]
Gadhi, N. [2 ]
Hamdaoui, K. [1 ]
Rahou, F. [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Dept Math, LSO, Fes, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Dept Math, LSO, FSDM, Fes, Morocco
关键词
Multiobjective optimization; local weak efficient solution; optimality conditions; psi-function; bilevel programming;
D O I
10.1080/02331934.2018.1523402
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we are concerned with a bilevel multiobjective optimization problem . First, using psi, a function introduced by Gadhi and Dempe [Necessary optimality conditions and a new approach tomulti-objective bilevel optimization problems. J Optim Theory Appl. 2012;155:100-114], we transform into a one level optimization problem . Second, on terms of convexificators, using a scalarization technique, we derive a Karash-Kuhn-Tucker (KKT)-type necessary optimality conditions to the initial problem under a generalized Abadie constraint qualification without the assumption that the lower-level problem satisfies the Mangasarian Fromovitz constraint qualification. Some examples have been introduced to illustrate our results.
引用
收藏
页码:2179 / 2189
页数:11
相关论文
共 27 条
[1]  
[Anonymous], 1998, Practical bi-level optimization
[2]   Necessary optimality conditions for bilevel optimization problems using convexificators [J].
Babahadda, H ;
Gadhi, N .
JOURNAL OF GLOBAL OPTIMIZATION, 2006, 34 (04) :535-549
[3]   OPTIMALITY CONDITIONS FOR THE BILEVEL PROGRAMMING PROBLEM [J].
BARD, JF .
NAVAL RESEARCH LOGISTICS, 1984, 31 (01) :13-26
[4]   Necessary and sufficient optimality conditions for set-valued optimization problems [J].
Benkenza, Najia ;
Gadhi, Nazih ;
Lafhim, Lahoussine .
GEORGIAN MATHEMATICAL JOURNAL, 2011, 18 (01) :53-66
[5]  
Clarke F., 1983, OPTIMIZATION NONSMOO
[6]   Necessary optimality conditions for bilevel set optimization problems [J].
Dempe, S. ;
Gadhi, N. .
JOURNAL OF GLOBAL OPTIMIZATION, 2007, 39 (04) :529-542
[7]   On the solution of convex bilevel optimization problems [J].
Dempe, S. ;
Franke, S. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (03) :685-703
[8]   Is bilevel programming a special case of a mathematical program with complementarity constraints? [J].
Dempe, S. ;
Dutta, J. .
MATHEMATICAL PROGRAMMING, 2012, 131 (1-2) :37-48
[9]   Second order optimality conditions for bilevel set optimization problems [J].
Dempe, S. ;
Gadhi, N. .
JOURNAL OF GLOBAL OPTIMIZATION, 2010, 47 (02) :233-245
[10]  
Dempe S., 2002, Foundations of bilevel programming