Nonexistence of positive solutions for a system of coupled fractional boundary value problems

被引:56
作者
Henderson, Johnny [1 ]
Luca, Rodica [2 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
[2] Gh Asachi Tech Univ, Dept Math, Iasi 700506, Romania
关键词
Riemann-Liouville fractional differential equations; integral boundary conditions; positive solutions; nonexistence; PARABOLIC EVOLUTION-EQUATIONS; DIFFERENTIAL-EQUATIONS; BLOW-UP; HEAT-EQUATIONS; INTEGRODIFFERENTIAL EQUATIONS; EXISTENCE;
D O I
10.1186/s13661-015-0403-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the nonexistence of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations with coupled integral boundary conditions.
引用
收藏
页数:12
相关论文
共 35 条
[1]   Existence of fractional neutral functional differential equations [J].
Agarwal, R. P. ;
Zhou, Yong ;
He, Yunyun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) :1095-1100
[2]   Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations [J].
Agarwal, Ravi P. ;
de Andrade, Bruno ;
Cuevas, Claudio .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) :3532-3554
[3]   ON THE EXISTENCE OF SOLUTIONS OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS [J].
Aghajani, Asadollah ;
Jalilian, Yaghoub ;
Trujillo, Juan J. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (01) :44-69
[4]   Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 :615-622
[5]   A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) :348-360
[6]   A Note on Fractional Differential Equations with Fractional Separated Boundary Conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[7]   PARABOLIC EVOLUTION-EQUATIONS AND NONLINEAR BOUNDARY-CONDITIONS [J].
AMANN, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 72 (02) :201-269
[8]  
AMANN H, 1986, P SYMP PURE MATH, V45, P17
[9]  
[Anonymous], 2012, ELECTRON J DIFFER EQ
[10]   COMPARISON METHOD FOR STABILITY ANALYSIS OF NON-LINEAR PARABOLIC PROBLEMS [J].
ARONSON, DG .
SIAM REVIEW, 1978, 20 (02) :245-264