A Cauchy Transform for Polymonogenic Functions on Fractal Domains

被引:0
作者
Gomez Santiesteban, Tania Rosa [1 ]
Abreu Blaya, Ricardo [1 ]
Hernandez Gomez, Juan C. [1 ]
Sigarreta Almira, Jose Maria [1 ]
机构
[1] Univ Autonoma Guerrero, Unidad Acad Matemat, Ave Lazaro Cardenas, Chilpancingo 39087, Guerrero, Mexico
关键词
Polymonogenic functions; Cauchy formula; Fractals; INTEGRAL-OPERATORS;
D O I
10.1007/s11785-022-01228-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Cauchy integral representation formula for polymonogenic functions has been established in smoothly bounded domains, but the method by which it has been obtained cannot be extended to the case of domains with fractal boundary. In this paper an alternative polymonogenic Cauchy transform is defined, which enables us to obtain several types of integral representation formulae, including the Cauchy and Borel-Pompeiu representations in this very general geometric setting.
引用
收藏
页数:16
相关论文
共 22 条
  • [1] Analytic Riemann boundary value problem on h-summable closed curves
    Abreu Blaya, Ricardo
    Bory Reyes, Juan
    Moreno Garcia, Tania
    Pena Perez, Yudier
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 227 : 593 - 600
  • [2] A Hermitian Cauchy formula on a domain with fractal boundary
    Abreu-Blaya, R.
    Bory-Reyes, J.
    Brackx, F.
    De Schepper, H.
    Sommen, F.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) : 273 - 282
  • [3] Cauchy Integral Operators Involving Higher Order Lipschitz Classes in the Poly-Analytic Function Theory
    Abreu-Blaya, Ricardo
    De la Cruz-Toranzo, Lianet
    Gomez-Santiesteban, Tania R.
    Ramirez-Leyva, Yulieth
    Bory-Reyes, Juan
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (02): : 253 - 260
  • [4] A Martinelli-Bochner formula on fractal domains
    Abreu-Blaya, Ricardo
    Bory-Reyes, Juan
    [J]. ARCHIV DER MATHEMATIK, 2009, 92 (04) : 335 - 343
  • [5] Complex and quaternionic Cauchy formulas in Koch snowflakes
    Avila Alfaro, Marisel
    Ricardo, Abreu Blaya
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (06) : 1287 - 1298
  • [6] Balk M. B., 1970, POLYANALYTIC FUNCTIO
  • [7] Balk MB., 1991, MATH RES
  • [8] Integral representations in complex, hypercomplex and Clifford analysis
    Begehr, H
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2002, 13 (03) : 223 - 241
  • [9] Begehr H, 1999, Z ANAL ANWEND, V18, P361
  • [10] Brackx F., 1976, FUNCT THEOR METHODS