Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications

被引:34
作者
Dorronsoro, Carlos [1 ]
Barcala, Xoana [1 ,2 ]
Gambra, Enrique [1 ,2 ]
Akondi, Vyas [1 ,4 ]
Sawides, Lucie [2 ]
Marrakchi, Yassine [2 ]
Rodriguez-Lopez, Victor [1 ]
Benedi-Garcia, Clara [1 ]
Vinas, Maria [1 ]
Lage, Eduardo [3 ]
Marcos, Susana [1 ]
机构
[1] CSIC, IO, Serrano 121, E-28006 Madrid, Spain
[2] 2Eyes Vis SL, Edison 3, E-28006 Madrid, Spain
[3] Univ Autonoma Madrid, Dept Elect & Commun Technol, E-28049 Madrid, Spain
[4] Stanford Univ, Dept Ophthalmol, Palo Alto, CA 94304 USA
基金
欧盟地平线“2020”;
关键词
ADAPTIVE OPTICS; MICROSCOPY; VISION;
D O I
10.1364/OE.27.002085
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Tunable lenses are becoming ubiquitous, in applications including microscopy, optical coherence tomography, computer vision, quality control, and presbyopic corrections. Many applications require an accurate control of the optical power of the lens in response to a time-dependent input waveform. We present a fast focimeter (3.8 KHz) to characterize the dynamic response of tunable lenses, which was demonstrated on different lens models. We found that the temporal response is repetitive and linear, which allowed the development of a robust compensation strategy based on the optimization of the input wave, using a linear time-invariant model. To our knowledge, this work presents the first procedure for a direct characterization of the transient response of tunable lenses and for compensation of their temporal distortions, and broadens the potential of tunable lenses also in high-speed applications. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:2085 / 2100
页数:16
相关论文
共 36 条
[1]   Experimental validations of a tunable-lens-based visual demonstrator of multifocal corrections [J].
Akondi, Vyas ;
Sawides, Lucie ;
Marrakchi, Yassine ;
Gambra, Enrique ;
Marcos, Susana ;
Dorronsoro, Carlos .
BIOMEDICAL OPTICS EXPRESS, 2018, 9 (12) :6302-6317
[2]   Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations [J].
Akondi, Vyas ;
Dorronsoro, Carlos ;
Gambra, Enrique ;
Marcos, Susana .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (07) :3410-3425
[3]   Electrically tunable lens speeds up 3D orbital tracking [J].
Annibale, Paolo ;
Dvornikov, Alexander ;
Gratton, Enrico .
BIOMEDICAL OPTICS EXPRESS, 2015, 6 (06) :2181-2190
[4]   Variable focal lens controlled by an external voltage: An application of electrowetting [J].
Berge, B ;
Peseux, J .
EUROPEAN PHYSICAL JOURNAL E, 2000, 3 (02) :159-163
[5]  
BLUM M, 2011, P SOC PHOTO-OPT INS, V8167, P81670
[6]   Tunable liquid-filled microlens array integrated with microfluidic network [J].
Chronis, N ;
Liu, GL ;
Jeong, KH ;
Lee, LP .
OPTICS EXPRESS, 2003, 11 (19) :2370-2378
[7]   Adaptive liquid microlenses activated by stimuli-responsive hydrogels [J].
Dong, Liang ;
Agarwal, Abhishek K. ;
Beebe, David J. ;
Jiang, Hongrui .
NATURE, 2006, 442 (7102) :551-554
[8]   Portable simultaneous vision device to simulate multifocal corrections [J].
Dorronsoro, Carlos ;
Radhakrishnan, Aiswaryah ;
Ramon Alonso-Sanz, Jose ;
Pascual, Daniel ;
Velasco-Ocana, Miriam ;
Perez-Merino, Pablo ;
Marcos, Susana .
OPTICA, 2016, 3 (08) :918-924
[9]   Rapid 3D light-sheet microscopy with a tunable lens [J].
Fahrbach, Florian O. ;
Voigt, Fabian F. ;
Schmid, Benjamin ;
Helmchen, Fritjof ;
Huisken, Jan .
OPTICS EXPRESS, 2013, 21 (18) :21010-21026
[10]   Presbyopia and the optical changes in the human crystalline lens with age [J].
Glasser, A ;
Campbell, MCW .
VISION RESEARCH, 1998, 38 (02) :209-229