Grids and universal computations on one-dimensional cellular automata

被引:1
作者
Yunes, Jean-Baptiste [1 ]
机构
[1] Univ Paris Diderot, CNRS, LIAFA, UMR 7089, F-75205 Paris 13, France
关键词
Cellular automata; Simulation; Universality; Programmation; TIME;
D O I
10.1007/s11047-012-9312-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article shows how universal computations can be achieved on one-dimensional cellular automata. We are interested in intrinsic universality: we want a CA in which any other CA can be represented and simulated with no intermediate coding relevant to another computation model. We first abstract the space-time diagram in favor of the dependency graph. Then we show how such a dependency graph (via treillis automata) can be realized by what is called a grid, leading to a simple uniform simulation. Finally, we exhibit a very simple universal brick that can be used in grids to obtain an intrinsic universal CA.
引用
收藏
页码:303 / 309
页数:7
相关论文
共 14 条
[1]  
Albert J., 1987, Complex Systems, V1, P1
[2]   A Simple -Dimensional Intrinsically Universal Quantum Cellular Automaton [J].
Arrighi, Pablo ;
Grattage, Jonathan .
LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, 2010, 6031 :70-+
[3]   A 1-DIMENSIONAL REAL-TIME ITERATIVE MULTIPLIER [J].
ATRUBIN, AJ .
IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1965, EC14 (03) :394-&
[4]  
CHOFFRUT C, 1984, ACTA INFORM, V21, P393, DOI 10.1007/BF00264617
[5]   REAL-TIME COMPUTATION BY N-DIMENSIONAL ITERATIVE ARRAYS OF FINITE-STATE MACHINES [J].
COLE, SN .
IEEE TRANSACTIONS ON COMPUTERS, 1969, C 18 (04) :349-&
[6]   INTRINSIC UNIVERSALITY IN SELF-ASSEMBLY [J].
Doty, David ;
Lutz, Jack H. ;
Patitz, Matthew J. ;
Summers, Scott M. ;
Woods, Damien .
27TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2010), 2010, 5 :275-286
[7]  
Durand B, 1996, P CELL AUT 1996 SAIS
[8]  
Durand-Lose J, 1997, STACS 97
[9]   A UNIVERSAL CELLULAR-AUTOMATON IN QUASI-LINEAR TIME AND ITS S-M-N FORM [J].
MARTIN, B .
THEORETICAL COMPUTER SCIENCE, 1994, 123 (02) :199-237
[10]   A 6-STATE MINIMAL TIME SOLUTION TO THE FIRING SQUAD SYNCHRONIZATION PROBLEM [J].
MAZOYER, J .
THEORETICAL COMPUTER SCIENCE, 1987, 50 (02) :183-238