Encapsulation of magnetic CoFe2O4 in SiO2 nanocomposites using hydroxyapatite as templates: A drug delivery system

被引:47
|
作者
Pon-On, Weeraphat [1 ]
Charoenphandhu, Narattaphol [2 ,3 ]
Tang, I-Ming [4 ,5 ]
Jongwattanapisan, Prapaporn [2 ,3 ]
Krishnamra, Nateetip [2 ,3 ]
Hoonsawat, Rassmidara [6 ]
机构
[1] Kasetsart Univ, Dept Phys, Fac Sci, Bangkok 10900, Thailand
[2] Mahidol Univ, Fac Sci, Ctr Calcium & Bone Res, Bangkok 10400, Thailand
[3] Mahidol Univ, Fac Sci, Dept Physiol, Bangkok 10400, Thailand
[4] Commiss Higher Educ, ThEP Ctr, Bangkok 10400, Thailand
[5] Mahidol Univ, Fac Sci, Dept Phys, Bangkok 10400, Thailand
[6] Mahidol Univ, Mahidol Univ Int Coll, Salaya 73720, Thailand
关键词
Hydroxyapatite; CoFe2O4; Nanoparticles; Hyperthermia; Magnetic drug target (MDT); BIOMEDICAL APPLICATIONS; SUSTAINED-RELEASE; AMORPHOUS INDOMETHACIN; CALCIUM PHOSPHATES; HEMOLYTIC-ACTIVITY; IN-VITRO; SOL-GEL; NANOPARTICLES; PARTICLES; ANISOTROPY;
D O I
10.1016/j.matchemphys.2011.10.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This research focuses on the synthesis of composite CoFe2O4 (CoF) nanoparticles coated with SiO2 using hydroxyapatite (HAP) as a template (CoFSi) and the pH controlled release of indomethacin (IMC) drug from this nanocomposite. The formation of the CoFe2O4-HAp (CoFHAp) nanoparticles and of the CoFe2O4@SiO2 (CoFSi) nanoparticles were monitored using XRD, FT-IR, that TEM, SEM, and ED studies. The magnetic properties are measured with a VSM. The TEM images showed the CoFe2O4 to have a core-shell structure encapsulated by a silica coating with an average size of 50 nm. BET showed the mean pore sizes of the silica shell to be approximately 10-20 nm and the surface area to be 212.8 m(2) g(-1). Magnetization (M-s) and remnant (M-r) magnetic properties of CoFSi nanocomposite decreased upon silica coating (from similar to 14 to 2 emu g(-1) for Ms of CoF and CoFSi, respectively). In contrast, the coercivity (H-c) of the uncoated CoFe2O4 (317 Oe) is lower than that of the coated nanocomposites (1250 Oe of CoFSi). In vitro drug loading of the CoFSi nanoparticles and its pH-responsive (pH = 4.0 and 7.0) controlled release were investigated using IMC as a model drug. It was seen that the release of the IMC drug was significantly faster at a pH of 4.0 compared to that at a neutral pH 7.0. Furthermore, the lower concentration of ions release (iron and cobalt) from CoFSi was observed after aging for 50 h. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:485 / 494
页数:10
相关论文
共 50 条
  • [41] COMPARISON BETWEEN MAGNETIC PROPERTIES OF CoFe2O4 AND CoFe2O4/POLYPYRROLE NANOPARTICLES
    Mazeika, K.
    Bacyte, V
    Tykhonenko-Polishchuk, Yu O.
    Kulyk, M. M.
    Yelenich, O., V
    Tovstolytkin, A., I
    LITHUANIAN JOURNAL OF PHYSICS, 2018, 58 (03): : 267 - 276
  • [42] THE MAGNETIC, MECHANICAL, THERMAL PROPERTIES AND UV RESISTANCE OF COFE2O4/SIO2-COATED FILM ON WOOD
    Gan, Wentao
    Gao, Likun
    Liu, Ying
    Zhan, Xianxu
    Li, Jian
    JOURNAL OF WOOD CHEMISTRY AND TECHNOLOGY, 2016, 36 (02) : 94 - 104
  • [43] A new CoFe2O4-Cr2O3-SiO2 fluorescent magnetic nanocomposite
    Borgohain, Chandan
    Senapati, Kula Kamal
    Mishra, Debabrata
    Sarma, Kanak Ch.
    Phukan, Prodeep
    NANOSCALE, 2010, 2 (10) : 2250 - 2256
  • [44] Preparation and characterization of nanocrystalline CoFe2O4 deposited on SiO2: in situ sol-gel process
    Prakash, I.
    Nallamuthu, N.
    Muralidharan, P.
    Venkateswarlu, M.
    Misra, Manjusri
    Mohanty, Amar
    Satyanarayana, N.
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2011, 58 (01) : 24 - 32
  • [45] Magnetic CoFe2O4 nanoparticles doped with metal ions: A review
    Sharifianjazi, Fariborz
    Moradi, Mostafa
    Parvin, Nader
    Nemati, Ali
    Rad, Azadeh Jafari
    Sheysi, Niloufar
    Abouchenari, Aliasghar
    Mohammadi, Ali
    Karbasi, Saeed
    Ahmadi, Zohre
    Esmaeilkhanian, Amirhossein
    Irani, Mohammad
    Pakseresht, Amirhosein
    Sahmani, Saeid
    Asl, Mehdi Shahedi
    CERAMICS INTERNATIONAL, 2020, 46 (11) : 18391 - 18412
  • [46] In situ microemulsion synthesis of hydroxyapatite-MgFe2O4 nanocomposite as a magnetic drug delivery system
    Foroughi, Firoozeh
    Hassanzadeh-Tabrizi, S. A.
    Bigham, Ashkan
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 68 : 774 - 779
  • [47] CoFe2O4/NiFe2O4/CeO2 nanocomposites: structural, FTIR, XPS, BET, and magnetic properties
    Ravi, Gulime
    Thyagarajan, K.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2024, 130 (10):
  • [48] Sonochemical synthesis of CoFe2O4 nanoparticles and their application in magnetic polystyrene nanocomposites
    Saffari, Jilla
    Ghanbari, Davood
    Mir, Noshin
    Khandan-Barani, Khatereh
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2014, 20 (06) : 4119 - 4123
  • [49] NANOCOMPOSITES GRAPHENE/CoFe2O4 AND GRAPHENE/NiFe2O4 - PREPARATION AND CHARACTERIZATION
    Jedrzejewska, A.
    Sibera, D.
    Pelech, R.
    Jedrzejewski, R.
    Narkiewicz, U.
    ARCHIVES OF METALLURGY AND MATERIALS, 2019, 64 (01) : 103 - 112
  • [50] Tuneable magnetic properties of hydrothermally synthesised core/shell CoFe2O4/NiFe2O4 and NiFe2O4/CoFe2O4 nanoparticles
    Almeida, Trevor P.
    Moro, Fabrizio
    Fay, Michael W.
    Zhu, Yanqiu
    Brown, Paul D.
    JOURNAL OF NANOPARTICLE RESEARCH, 2014, 16 (05)