Protection strategy for DC multi-microgrids based on gradient of branch admittance difference

被引:0
|
作者
Zhang, Weiliang [1 ,3 ]
Zhang, Hui [1 ,2 ]
Zhi, Na [1 ]
Wang, Hanwei [1 ]
Zeng, Cheng [1 ]
机构
[1] Xian Univ Technol, Sch Elect Engn, Xian, Peoples R China
[2] Tsinghua Univ, State Key Lab Power Syst, Beijing, Peoples R China
[3] Guangxi Univ Sci & Technol, Sch Elect Elect & Comp Engn, Guangxi Province, Peoples R China
基金
中国国家自然科学基金;
关键词
SCHEME;
D O I
10.1049/pel2.12282
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fast and reliable short fault detection is one of the key technologies in the development of DC multi-microgrids (MMG). In order to improve the speed and reliability of DC relay protection, especially to solve the problem of protection failure in high impedance short-circuit, a fault criterion based on the gradient of the branch admittance differential is proposed. The branch admittance is the quotient of current and voltage. It makes effective use of the characteristics of the fault current and voltage, so it has higher sensitivity. By detecting the current and voltage at the two sides of the branch, the admittance differential gradient of the branch is calculated and used as the fault criterion. In case of normal operation or fault outside the protection zone, the differential admittance gradient of the branch is zero, and in case of fault inside the protection zone, the admittance differential gradient of the branch is greater than zero regardless of high impedance or low impedance short-circuit. Meanwhile, the admittance difference gradient is the largest at the beginning of the fault. Therefore, the detection time is reduced. Finally, the experimental results confirm the effectiveness of the proposed strategy.
引用
收藏
页码:963 / 977
页数:15
相关论文
共 24 条
  • [21] An improved protection strategy based on PCC-SVM algorithm for identification of high impedance arcing fault in smart microgrids in the presence of distributed generation
    Eslami, Mostafa
    Jannati, Mohsen
    Tabatabaei, S. Sepehr
    MEASUREMENT, 2021, 175
  • [22] A Novel Protection Based on Current Correlation for DC Lines in Hybrid Cascaded Multi-Terminal HVDC Transmission System
    Liu, Ningning
    Li, Yongli
    Chen, Xiaolong
    Li, Song
    Li, Tao
    IEEE TRANSACTIONS ON POWER DELIVERY, 2023, 38 (04) : 2794 - 2809
  • [23] DC Fault Protection in Multi-terminal VSC-Based HVDC Transmission Systems with Current Limiting Reactors
    Mohan, M.
    Vittal, K. Panduranga
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2019, 14 (01) : 1 - 12
  • [24] Application research on pilot protection method for multi-terminal hybrid line-commutated converter/modular multilever converter-based high voltage DC system
    Zhang, Chenhao
    Song, Guobing
    Yin, Lishuai
    Xu, Ruidong
    Li, Yang
    Yang, Liming
    Dong, Xinzhou
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2021, 15 (01) : 71 - 85