Combining the K-bubble strengthening and Y-doping: Microstructure, mechanical/thermal properties, and thermal shock behavior of W-K-Y alloys

被引:7
作者
Chen, Longqing [1 ]
Li, Sheng [1 ]
Qiu, Wenbin [1 ]
Huang, Bo [2 ]
Lian, Youyun [3 ]
Liu, Xiang [3 ]
Tang, Jun [1 ]
机构
[1] Sichuan Univ, Inst Nucl Sci & Technol, Minist Educ, Key Lab Radiat Phys & Technol, Chengdu 610064, Peoples R China
[2] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Guangdong, Peoples R China
[3] Southwestern Inst Phys, Chengdu 610064, Peoples R China
基金
中国国家自然科学基金;
关键词
Tungsten-potassium alloys; Yttrium doping; Multiple strengthening effects; TUNGSTEN; RESISTANCE; ELEMENTS;
D O I
10.1016/j.ijrmhm.2021.105739
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nano-potassium bubble strengthened tungsten (W-K) alloy with excellent overall performance has been proven to be one of the most desirable plasma facing materials (PFMs). However, some key properties, e.g., thermal heat resistance, ductile-brittle transition temperature (DBTT), strength and toughness need to be further improved to meet the requirements of fusion reactor. Herein, pure yttrium (Y) was doped in W-K alloy to achieve multiple strengthening effects. The grains of W-K alloy have been significantly refined, and the tensile strength was improved along with the introducing of Y. Thermal shock cracking threshold has increased to exceed 0.62 GW/ m(2). Interestingly, the existing form and size of the precipitates differed with the change of doping amount, leading to the nonlinear evolution of DBTT. The W-K alloy with 0.1 wt%-Y doping content (W-K-0.1Y) showed the best match of strength and toughness. Furthermore, coupled with relatively good thermal conductivity, W-K0.1Y alloy displayed prominent thermal shock resistance. This work may pave a way for designing PFMs with higher performance.
引用
收藏
页数:8
相关论文
共 43 条
[1]   POTASSIUM BUBBLES IN TUNGSTEN WIRE [J].
BRIANT, CL .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1993, 24 (05) :1073-1084
[2]   Annealing induced shrinkage-fill effect of tungsten-potassium alloys with trace titanium doping [J].
Chen, Longqing ;
Qiu, Wenbin ;
Deng, Hao ;
Yang, Xiaoliang ;
Song, Yangyipeng ;
Zhu, Jun ;
Tang, Jun .
INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2020, 90
[3]   High thermal shock resistance realized by Ti/TiH2 doped tungsten-potassium alloys [J].
Chen, Longqing ;
Huang, Bo ;
Yang, Xiaoliang ;
Lian, Youyun ;
Liu, Xiang ;
Tang, Jun .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 780 :388-399
[4]   Determination of the DBTT of nanoscale ZrC doped W alloys through amplitude-dependent internal friction technique [J].
Ding, H. L. ;
Xie, Z. M. ;
Fang, Q. F. ;
Zhang, T. ;
Cheng, Z. J. ;
Zhuang, Z. ;
Wang, X. P. ;
Liu, C. S. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 716 :268-273
[5]   Effect of cyclic heat loading on pure tungsten for the ITER divertor [J].
Fukuda, M. ;
Seki, Y. ;
Ezato, K. ;
Yokoyama, K. ;
Nishi, H. ;
Suzuki, S. .
JOURNAL OF NUCLEAR MATERIALS, 2020, 542
[6]   Property change of advanced tungsten alloys due to neutron irradiation [J].
Fukuda, Makoto ;
Hasegawa, Akira ;
Tanno, Takashi ;
Nogami, Shuhei ;
Kurishita, Hiroaki .
JOURNAL OF NUCLEAR MATERIALS, 2013, 442 (1-3) :S273-S276
[7]   Influence of impurities on the fracture behaviour of tungsten [J].
Gludovatz, B. ;
Wurster, S. ;
Weingaertner, T. ;
Hoffmann, A. ;
Pippan, R. .
PHILOSOPHICAL MAGAZINE, 2011, 91 (22) :3006-3020
[8]  
Haynes W. M, 2014, CRC Handbook of Chemistry and Physics
[9]   Preparation and thermal shock characterization of yttrium doped tungsten-potassium alloy [J].
He, Bo ;
Huang, Bo ;
Xiao, Ye ;
Lian, Youyun ;
Liu, Xiang ;
Tang, Jun .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 686 :298-305
[10]   Cracking failure study of ITER-reference tungsten grade under single pulse thermal shock loads at elevated temperatures [J].
Hirai, T. ;
Pintsuk, G. ;
Linke, J. ;
Batilliot, M. .
JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 :751-754