Solving wave dispersion equation for dissipative media using homotopy perturbation technique

被引:14
作者
Chang, HK
Liou, JC
机构
[1] Natl Chiao Tung Univ, Dept Civil Engn, Hsinchu 300, Taiwan
[2] Natl Chiao Tung Univ, Dept Civil Engn, Hsinchu 300, Taiwan
来源
JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING-ASCE | 2006年 / 132卷 / 01期
关键词
D O I
10.1061/(ASCE)0733-950X(2006)132:1(28)
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This investigation develops a third-order explicit approximation to finding the roots of the dispersion relation for water waves that propagate over dissipative media, using homotopy perturbation. The proposed third-order approximation can give an explicit and accurate calculation on the inaccessible roots of the dispersion relation. The homotopy method yields global convergence to the roots. Interestingly, the contours of the domains of attraction of the roots resemble a fractal pattern.
引用
收藏
页码:28 / 35
页数:8
相关论文
共 17 条
[1]  
Allgower E., 1990, NUMERICAL CONTINUATI
[2]  
EYNDE RV, 1999, HIST TOPOLOGY
[3]   Variational iteration method - a kind of non-linear analytical technique: Some examples [J].
He, JH .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1999, 34 (04) :699-708
[4]   A new perturbation technique which is also valid for large parameters [J].
He, JH .
JOURNAL OF SOUND AND VIBRATION, 2000, 229 (05) :1257-1263
[5]   A coupling method of a homotopy technique and a perturbation technique for non-linear problems [J].
He, JH .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2000, 35 (01) :37-43
[6]   Homotopy perturbation technique [J].
He, JH .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 178 (3-4) :257-262
[7]   PL HOMOTOPY FOR FINDING ALL THE ROOTS OF A POLYNOMIAL [J].
KOJIMA, M ;
NISHINO, H ;
ARIMA, N .
MATHEMATICAL PROGRAMMING, 1979, 16 (01) :37-62
[8]   REGULARITY RESULTS FOR REAL ANALYTIC HOMOTOPIES [J].
LI, TY ;
MALLETPARET, J ;
YORKE, JA .
NUMERISCHE MATHEMATIK, 1985, 46 (01) :43-50
[9]  
LI TY, 1987, NUMER MATH, V50, P283, DOI 10.1007/BF01390706
[10]   HOMOTOPY METHOD FOR GENERALIZED EIGENVALUE PROBLEMS AX=LAMBDA-BX [J].
LI, TY ;
SAUER, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 91 :65-74