3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries

被引:198
作者
Yuan, Tianci [1 ]
Wang, Yanxia [1 ]
Zhang, Jiexin [1 ]
Pu, Xiangjun [2 ]
Ai, Xinping [1 ]
Chen, Zhongxue [2 ]
Yang, Hanxi [1 ,2 ]
Cao, Yuliang [1 ]
机构
[1] Wuhan Univ, Coll Chem & Mol Sci, Hubei Int Sci & Technol Cooperat Base Sustainable, Wuhan 430072, Hubei, Peoples R China
[2] Wuhan Univ, Sch Power & Mech Engn, Minist Educ, Key Lab Hydraul Machinery Transients, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Na4Fe3(PO4)(2)P2O7; rGO; Low cost; Cathode; Sodium-ion battery; HIGH-VOLTAGE CATHODE; LONG-LIFE; RECHARGEABLE BATTERIES; ELECTRODE MATERIALS; OLIVINE NAFEPO4; RATE CAPABILITY; NA3V2(PO4)(3); STABILITY; PHOSPHATE; PYROPHOSPHATE;
D O I
10.1016/j.nanoen.2018.11.011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-ion battery has emerged as one of most promising technologies for large-scale energy storage system, and hence has stimulated extensive exploration of applicable electrode materials with low cost and superb electrochemical properties. Herein, 3D graphene decorated Na4Fe3(PO4)(2)(P2O7) microspheres as a low-cost and environmentally friendly cathode material are synthesized by using a facile spray-drying method. The as-prepared NFPP@rGO composite exhibits a high reversible capacity of 128 mAh g(-1) at 0.1 C, a superior rate capability (35 mAh g(-1) at 200 C), and a long cycling life (62.3% capacity retention over 6000 cycles at 10 C). The excellent electrochemical performance is attributed to combined advantages of graphene coating on the surface of nanoparticles and the flexible 3D graphene network, which not only improve the electronic conductivity, but also accommodate the structural stress of the material during charging and discharging. Therefore, the NFPP@rGO microsphere with superior electrochemical performances, low-cost raw materials, simple synthetic route and high thermal stability is considered as a very attractive cathode electrode for sodium ion battery.
引用
收藏
页码:160 / 168
页数:9
相关论文
共 56 条
[1]   Polythiophene-Wrapped Olivine NaFePO4 as a Cathode for Na-Ion Batteries [J].
Ali, Ghulam ;
Lee, Ji-Hoon ;
Susanto, Dieky ;
Choi, Seong-Won ;
Cho, Byung Won ;
Nam, Kyung-Wan ;
Chung, Kyung Yoon .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (24) :15422-15429
[2]   A 3.8-V earth-abundant sodium battery electrode [J].
Barpanda, Prabeer ;
Oyama, Gosuke ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
NATURE COMMUNICATIONS, 2014, 5
[3]   Na2FeP2O7: A Safe Cathode for Rechargeable Sodium-ion Batteries [J].
Barpanda, Prabeer ;
Liu, Guandong ;
Ling, Chris D. ;
Tamaru, Mao ;
Avdeev, Maxim ;
Chung, Sai-Cheong ;
Yamada, Yuki ;
Yamada, Atsuo .
CHEMISTRY OF MATERIALS, 2013, 25 (17) :3480-3487
[4]   A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries [J].
Barpanda, Prabeer ;
Ye, Tian ;
Avdeev, Maxim ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (13) :4194-4197
[5]   Sodium iron pyrophosphate: A novel 3.0 V iron-based cathode for sodium-ion batteries [J].
Barpanda, Prabeer ;
Ye, Tian ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Yuki ;
Okubo, Masashi ;
Zhou, Haoshen ;
Yamada, Atsuo .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 24 :116-119
[6]   Additional Sodium Insertion into Polyanionic Cathodes for Higher-Energy Na-Ion Batteries [J].
Bianchini, Matteo ;
Xiao, Penghao ;
Wang, Yan ;
Ceder, Gerbrand .
ADVANCED ENERGY MATERIALS, 2017, 7 (18)
[7]   Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life [J].
Cao, Yuliang ;
Xiao, Lifen ;
Wang, Wei ;
Choi, Daiwon ;
Nie, Zimin ;
Yu, Jianguo ;
Saraf, Laxmikant V. ;
Yang, Zhenguo ;
Liu, Jun .
ADVANCED MATERIALS, 2011, 23 (28) :3155-+
[8]   Crystal chemistry of Na insertion/deinsertion in FePO4-NaFePO4 [J].
Casas-Cabanas, Montse ;
Roddatis, Vladimir V. ;
Saurel, Damien ;
Kubiak, Pierre ;
Carretero-Gonzalez, Javier ;
Palomares, Veronica ;
Serras, Paula ;
Rojo, Teofilo .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (34) :17421-17423
[9]   Carbon-Coated Na3.32Fe2.34( P2O7)2 Cathode Material for High-Rate and Long-Life Sodium-Ion Batteries [J].
Chen, Mingzhe ;
Chen, Lingna ;
Hu, Zhe ;
Liu, Qiannan ;
Zhang, Binwei ;
Hu, Yuxiang ;
Gu, Qinfen ;
Wang, Jian-Li ;
Wang, Lian-Zhou ;
Guo, Xiaodong ;
Chou, Shu-Lei ;
Dou, Shi-Xue .
ADVANCED MATERIALS, 2017, 29 (21)
[10]   Next Generation Batteries: Aim for the Future [J].
Chou, Shulei ;
Yu, Yan .
ADVANCED ENERGY MATERIALS, 2017, 7 (24)