Fourth-order algorithms for solving the imaginary-time Gross-Pitaevskii equation in a rotating anisotropic trap

被引:50
作者
Chin, SA [1 ]
Krotscheck, E
机构
[1] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
[2] Johannes Kepler Univ Linz, Inst Theoret Phys, A-4040 Linz, Austria
来源
PHYSICAL REVIEW E | 2005年 / 72卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.72.036705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By implementing the exact density matrix for the rotating anisotropic harmonic trap, we derive a class of very fast and accurate fourth-order algorithms for evolving the Gross-Pitaevskii equation in imaginary time. Such fourth-order algorithms are possible only with the use of forward, positive time step factorization schemes. These fourth-order algorithms converge at time-step sizes an order-of-magnitude larger than conventional second-order algorithms. Our use of time-dependent factorization schemes provides a systematic way of devising algorithms for solving this type of nonlinear equations.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation [J].
Adhikari, SK ;
Muruganandam, P .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2002, 35 (12) :2831-2843
[2]   Fourth-order algorithms for solving local Schrodinger equations in a strong magnetic field [J].
Aichinger, M ;
Chin, SA ;
Krotscheck, E .
COMPUTER PHYSICS COMMUNICATIONS, 2005, 171 (03) :197-207
[3]  
AICHINGER M, UNPUB, P37401
[4]   A fourth-order real-space algorithm for solving local Schrodinger equations [J].
Auer, J ;
Krotscheck, E ;
Chin, SA .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (15) :6841-6846
[5]   HIGH-ORDER SPLIT-STEP EXPONENTIAL METHODS FOR SOLVING COUPLED NONLINEAR SCHRODINGER-EQUATIONS [J].
BANDRAUK, AD ;
SHEN, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (21) :7147-7155
[6]   Structure of positive decompositions of exponential operators [J].
Chin, SA .
PHYSICAL REVIEW E, 2005, 71 (01)
[7]   Forward symplectic integrators for solving gravitational few-body problems [J].
Chin, SA ;
Chen, CR .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2005, 91 (3-4) :301-322
[8]   Symplectic integrators from composite operator factorizations [J].
Chin, SA .
PHYSICS LETTERS A, 1997, 226 (06) :344-348
[9]   Gradient symplectic algorithms for solving the Schrodinger equation with time-dependent potentials [J].
Chin, SA ;
Chen, CR .
JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (04) :1409-1415
[10]   Short-time-evolved wave functions for solving quantum many-body problems [J].
Ciftja, O ;
Chin, SA .
PHYSICAL REVIEW B, 2003, 68 (13)