Some eigenvalue results for maximal monotone operators

被引:2
作者
Kim, In-Sook [1 ]
机构
[1] Sungkyunkwan Univ, Dept Math, Suwon 440746, South Korea
关键词
Eigenvalues; Maximal monotone operators; Countably condensing operators; Perturbations; Index theory; BANACH-SPACES; PERTURBATIONS;
D O I
10.1016/j.na.2011.05.081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the eigenvalue problem of the form 0 is an element of Tx - lambda Cx, where X is a real reflexive Banach space with its dual X* and T : X superset of D(T) -> 2(X)* is a maximal monotone multi-valued operator and C : D(T) -> X* is a not necessarily continuous single-valued operator. Using the index theory for countably condensing operators, we extend some related results of Kartsatos to the countably condensing case instead of compactness of the approximant J(mu). Moreover, the solvability of the perturbed problem 0 is an element of Tx + Cx is discussed in an analogous method to the above problem. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6041 / 6049
页数:9
相关论文
共 16 条
[11]  
LI HZ, 2000, J SICHUAN U, V37, P303
[12]  
MASSABO I, 1979, NONLINEAR ANAL, V3, P35
[13]  
Monch H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P985, DOI 10.1016/0362-546X(80)90010-3
[14]  
STUART CA, 1973, P LOND MATH SOC, V27, P531
[15]  
Toledano J.M.A., 1997, Measures of Noncompactness in Metric Fixed Point Theory
[16]  
VATH M, 1999, TOPOL METHOD NONL AN, V13, P341, DOI DOI 10.12775/TMNA.1999.018