Self-Switching Markov Chains: Emerging dominance phenomena

被引:1
作者
Gallo, S. [1 ]
Iacobelli, G. [2 ]
Ost, G. [2 ]
Takahashi, D. Y. [3 ]
机构
[1] Univ Fed Sao Carlos, Sao Paulo, Brazil
[2] Univ Fed Rio de Janeiro, Rio De Janeiro, Brazil
[3] Univ Fed Rio Grande do Norte, Natal, RN, Brazil
基金
巴西圣保罗研究基金会;
关键词
Markov chains; Scaling limits; Animal behavior; Evolution; Metastability; RANDOM-WALK; MODELS;
D O I
10.1016/j.spa.2021.10.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The law of many dynamical systems changes with the evolution of the system. These changes are often associated with the occurrence of certain events whose time of occurrence depends on the trajectory of the system itself. Dynamics that take longer to change will be observed more frequently and may dominate in the long run (the only ones observed). This article proposes a Markov chain model, called Self-Switching Markov Chain, in which the emergence of dominant dynamics can be rigorously addressed. We present conditions and scaling under which we observe with probability one only the subset of dominant dynamics. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:254 / 284
页数:31
相关论文
共 12 条
[1]   Cut-off and exit from metastability:: two sides of the same coin [J].
Bertoncini, Olivier ;
Barrera, Javiera M. ;
Fernandez, Roberto .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (11-12) :691-696
[2]   Ethology as a physical science [J].
Brown, Andre E. X. ;
de Bivort, Benjamin .
NATURE PHYSICS, 2018, 14 (07) :653-657
[3]  
Cappe O., 2006, INFERENCE HIDDEN MAR
[4]   Random walk models in biology [J].
Codling, Edward A. ;
Plank, Michael J. ;
Benhamou, Simon .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2008, 5 (25) :813-834
[5]   ON CERTAIN LIMIT THEOREMS OF THE THEORY OF PROBABILITY [J].
ERDOS, P ;
KAC, M .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (04) :292-302
[6]   Asymptotically exponential hitting times and metastability: a pathwise approach without reversibility [J].
Fernandez, R. ;
Manzo, F. ;
Nardi, F. R. ;
Scoppola, E. .
ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 :1-37
[7]   Logical-Rule Models of Classification Response Times: A Synthesis of Mental-Architecture, Random-Walk, and Decision-Bound Approaches [J].
Fific, Mario ;
Little, Daniel R. ;
Nosofsky, Robert M. .
PSYCHOLOGICAL REVIEW, 2010, 117 (02) :309-348
[8]  
Kass R.E., 1990, BAYESIAN LIKELIHOOD, P473
[9]  
Puterman ML., 1994, Markov decision processes: discrete stochastic dynamic programming. Series in probability and statistics, DOI [10.1002/9780470316887, DOI 10.1002/9780470316887]
[10]  
Slater P.J. B., 1999, Essentials of Animal Behaviour