Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation

被引:82
作者
Li, B [1 ]
Chen, Y [1 ]
Zhang, HQ [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
extended-tanh method; GZK equation; travelling wave solutions; solitons;
D O I
10.1016/S0096-3003(02)00610-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by means of a proper transformation and symbolic computation, we study the exact travelling wave solutions for a generalized Zakharov-Kuznetsov (GZK) equation by using the extended-tanh method and direct assumption method. As a result, rich exact travelling wave solutions, which contain new kink-shaped solitons, bell-shaped solitons, periodic solutions, combined formal solitons, rational solutions and singular solitons for GZK equation, are obtained. (C) 2002 Elsevier Inc. All rights reserved.
引用
收藏
页码:653 / 666
页数:14
相关论文
共 19 条
[1]  
Ablowitz MJ., 1991, Nonlinear Evolution Equations and Inverse Scattering, DOI 10.1017/CBO9780511623998
[2]   LONG NON-LINEAR WAVES IN FLUID FLOWS [J].
BENNEY, DJ .
JOURNAL OF MATHEMATICS AND PHYSICS, 1966, 45 (01) :52-&
[3]  
BEREZIN YA, 1967, ZH EKSP TEOR FIZ, V24, P1049
[4]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[5]   A note on the homogeneous balance method [J].
Fan, EG ;
Zhang, HQ .
PHYSICS LETTERS A, 1998, 246 (05) :403-406
[6]   A new complex line soliton for the two-dimensional KdV-Burgers equation [J].
Fan, EG ;
Zhang, J ;
Hon, BYC .
PHYSICS LETTERS A, 2001, 291 (06) :376-380
[7]   Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled MKdV equation [J].
Fan, EG .
PHYSICS LETTERS A, 2001, 282 (1-2) :18-22
[8]  
GU CH, 1990, SOLITON THEORY ITS A
[9]  
Kadomtsev B. B., 1970, Soviet Physics - Doklady, V15, P539
[10]   An asymptotic approach to solitary wave instability and critical collapse in long-wave KdV-type evolution equations [J].
Pelinovsky, DE ;
Grimshaw, RHJ .
PHYSICA D-NONLINEAR PHENOMENA, 1996, 98 (01) :139-155