Switch on the high thermal conductivity of graphene paper

被引:48
作者
Xie, Yangsu [1 ]
Yuan, Pengyu [1 ]
Wang, Tianyu [1 ]
Hashemi, Nastaran [1 ]
Wang, Xinwei [1 ,2 ]
机构
[1] Iowa State Univ, Dept Mech Engn, 2025 Black Engn Bldg, Ames, IA 50011 USA
[2] Qingdao Technol Univ, Sch Environm & Municipal Engn, Qingdao 266033, Shandong, Peoples R China
基金
美国国家科学基金会;
关键词
SINGLE-LAYER; CHEMICAL-REDUCTION; GRAPHITE; OXIDE; TRANSPORT; ELECTRODES; DEPENDENCE; EXPANSION; FILMS; HEAT;
D O I
10.1039/c6nr06402g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This work reports on the discovery of a high thermal conductivity (kappa) switch-on phenomenon in high purity graphene paper (GP) when its temperature is reduced from room temperature down to 10 K. The kappa after switch-on (1732 to 3013 W m(-1) K-1) is 4-8 times that before switch-on. The triggering temperature is 245-260 K. The switch-on behavior is attributed to the thermal expansion mismatch between pure graphene flakes and impurity-embedded flakes. This is confirmed by the switch behavior of the temperature coefficient of resistance. Before switch-on, the interactions between pure graphene flakes and surrounding impurity-embedded flakes efficiently suppress phonon transport in GP. After switch-on, the structure separation frees the pure graphene flakes from the impurity-embedded neighbors, leading to a several-fold kappa increase. The measured kappa before and after switch-on is consistent with the literature reported kappa values of supported and suspended graphene. By conducting comparison studies with pyrolytic graphite, graphene oxide paper and partly reduced graphene paper, the whole physical picture is illustrated clearly. The thermal expansion induced switch-on is feasible only for high purity GP materials. This finding points out a novel way to switch on/off the thermal conductivity of graphene paper based on substrate-phonon scattering.
引用
收藏
页码:17581 / 17597
页数:17
相关论文
共 75 条
[1]   Non-Annealed Graphene Paper as a Binder-Free Anode for Lithium-Ion Batteries [J].
Abouimrane, Ali ;
Compton, Owen C. ;
Amine, Khalil ;
Nguyen, SonBinh T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (29) :12800-12804
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]  
Bao WZ, 2009, NAT NANOTECHNOL, V4, P562, DOI [10.1038/nnano.2009.191, 10.1038/NNANO.2009.191]
[4]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[5]   Annealing a graphene oxide film to produce a free standing high conductive graphene film [J].
Chen, Cheng-Meng ;
Huang, Jia-Qi ;
Zhang, Qiang ;
Gong, Wen-Zhao ;
Yang, Quan-Hong ;
Wang, Mao-Zhang ;
Yang, Yong-Gang .
CARBON, 2012, 50 (02) :659-667
[6]   Substrate coupling suppresses size dependence of thermal conductivity in supported graphene [J].
Chen, Jie ;
Zhang, Gang ;
Li, Baowen .
NANOSCALE, 2013, 5 (02) :532-536
[7]  
Chen SS, 2012, NAT MATER, V11, P203, DOI [10.1038/NMAT3207, 10.1038/nmat3207]
[8]   Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments [J].
Chen, Shanshan ;
Moore, Arden L. ;
Cai, Weiwei ;
Suk, Ji Won ;
An, Jinho ;
Mishra, Columbia ;
Amos, Charles ;
Magnuson, Carl W. ;
Kang, Junyong ;
Shi, Li ;
Ruoff, Rodney S. .
ACS NANO, 2011, 5 (01) :321-328
[9]   Thermal expansion and impurity effects on lattice thermal conductivity of solid argon [J].
Chen, YF ;
Lukes, JR ;
Li, DY ;
Yang, JK ;
Wu, YH .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (08) :3841-3846
[10]   Temperature Dependence of Electrical and Thermal Conduction in Single Silver Nanowire [J].
Cheng, Zhe ;
Liu, Longju ;
Xu, Shen ;
Lu, Meng ;
Wang, Xinwei .
SCIENTIFIC REPORTS, 2015, 5