The introduction of the fungal D-galacturonate pathway enables the consumption of D-galacturonic acid by Saccharomyces cerevisiae

被引:26
作者
Biz, Alessandra [1 ,3 ]
Sugai-Guerios, Maura Harumi [1 ,2 ]
Kuivanen, Joosu [3 ]
Maaheimo, Hannu [3 ]
Krieger, Nadia [4 ]
Mitchell, David Alexander [1 ]
Richard, Peter [1 ,3 ]
机构
[1] Univ Fed Parana, Dept Bioquim & Biol Mol, Cx P 19046 Ctr Politecn, BR-81531980 Curitiba, Parana, Brazil
[2] Univ Fed Santa Catarina, Dept Engn Quim & Engn Alimentos, Cx P 476 Campus Reitor Joao David Ferreira Lima, BR-88040970 Florianopolis, SC, Brazil
[3] VTT Tech Res Ctr Finland Ltd, POB 1000, Espoo 02044, Finland
[4] Univ Fed Parana, Dept Quim, Cx P 19081 Ctr Politecn, BR-81531980 Curitiba, Parana, Brazil
基金
芬兰科学院;
关键词
Ethanol; D-galacturonic acid; Saccharomyces cerevisiae; Citrus pulp; Metabolic engineering; FERMENTATION; IDENTIFICATION; BIOMASS;
D O I
10.1186/s12934-016-0544-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Pectin-rich wastes, such as citrus pulp and sugar beet pulp, are produced in considerable amounts by the juice and sugar industry and could be used as raw materials for biorefineries. One possible process in such biorefineries is the hydrolysis of these wastes and the subsequent production of ethanol. However, the ethanol-producing organism of choice, Saccharomyces cerevisiae, is not able to catabolize D-galacturonic acid, which represents a considerable amount of the sugars in the hydrolysate, namely, 18 % (w/w) from citrus pulp and 16 % (w/w) sugar beet pulp. Results: In the current work, we describe the construction of a strain of S. cerevisiae in which the five genes of the fungal reductive pathway for D-galacturonic acid catabolism were integrated into the yeast chromosomes: gaaA, gaaC and gaaD from Aspergillus niger and lgd1 from Trichoderma reesei, and the recently described D-galacturonic acid transporter protein, gat1, from Neurospora crassa. This strain metabolized D-galacturonic acid in a medium containing D-fructose as co-substrate. Conclusion: This work is the first demonstration of the expression of a functional heterologous pathway for D-galacturonic acid catabolism in Saccharomyces cerevisiae. It is a preliminary step for engineering a yeast strain for the fermentation of pectin-rich substrates to ethanol.
引用
收藏
页数:11
相关论文
共 27 条
[1]  
Adams A., 1997, METHODS YEAST GENETI
[2]  
Ausubel FM., 1994, Curr. Protoc. Mol. Biol
[3]   Identification and characterization of a galacturonic acid transporter from Neurospora crassa and its application for Saccharomyces cerevisiae fermentation processes [J].
Benz, J. Philipp ;
Protzko, Ryan J. ;
Andrich, Jonas M. S. ;
Bauer, Stefan ;
Dueber, John E. ;
Somerville, Chris R. .
BIOTECHNOLOGY FOR BIOFUELS, 2014, 7
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates [J].
Buchanan, CL ;
Connaris, H ;
Danson, MJ ;
Reeve, CD ;
Hough, DW .
BIOCHEMICAL JOURNAL, 1999, 343 :563-570
[6]   Pectin-rich biomass as feedstock for fuel ethanol production [J].
Edwards, Meredith C. ;
Doran-Peterson, Joy .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 95 (03) :565-575
[7]  
FAOSTAT, 2013, PROD QUANT COUNTR
[8]  
Gietz D, 1998, METHOD MICROBIOL, V26, P53
[9]   Extraction and recovery of pectic fragments from citrus processing waste for coproduction with ethanol [J].
Grohman, Karel ;
Cameron, Randall ;
Kim, Yang ;
Widmer, Wilbur ;
Luzio, Gary .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2013, 88 (03) :395-407
[10]   HYDROLYSIS OF ORANGE PEEL WITH PECTINASE AND CELLULASE ENZYMES [J].
GROHMANN, K ;
BALDWIN, EA .
BIOTECHNOLOGY LETTERS, 1992, 14 (12) :1169-1174