A two-dimensional model for quasigeostrophic flow: Comparison with the two-dimensional Euler flow

被引:93
作者
Majda, AJ [1 ]
Tabak, EG [1 ]
机构
[1] NYU, COURANT INST MATH SCI, NEW YORK, NY 10012 USA
基金
美国国家科学基金会;
关键词
geostrophic balance; frontogenesis; Euler equations; Vortex stretching; singular behavior;
D O I
10.1016/0167-2789(96)00114-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A simple two-dimensional model for quasigeostrophic flow is contrasted with the two-dimensional incompressible Euler equations. The model arises under the assumptions of fast rotation, uniform stratification and uniform potential vorticity. It is found that the more local feed-back of the quasigeostrophic model gives rise to strongly nonlinear front formation, as opposed to two-dimensional Euler, where the steepening process of mature fronts obeys a nonlocal, nearly Linear mechanism.
引用
收藏
页码:515 / 522
页数:8
相关论文
共 13 条
[1]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[2]  
BLUMEN W, 1978, J ATMOS SCI, V35, P774, DOI 10.1175/1520-0469(1978)035<0774:UPVFPI>2.0.CO
[3]  
2
[4]   A SIMPLE ONE-DIMENSIONAL MODEL FOR THE 3-DIMENSIONAL VORTICITY EQUATION [J].
CONSTANTIN, P ;
LAX, PD ;
MAJDA, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (06) :715-724
[5]   SINGULAR FRONT FORMATION IN A MODEL FOR QUASI-GEOSTROPHIC FLOW [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, EG .
PHYSICS OF FLUIDS, 1994, 6 (01) :9-11
[6]   GEOMETRIC STATISTICS IN TURBULENCE [J].
CONSTANTIN, P .
SIAM REVIEW, 1994, 36 (01) :73-98
[7]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[8]  
E WN, 1993, PHYS FLUIDS A-FLUID, V5, P998, DOI 10.1063/1.858644
[9]   SURFACE QUASI-GEOSTROPHIC DYNAMICS [J].
HELD, IM ;
PIERREHUMBERT, RT ;
GARNER, ST ;
SWANSON, KL .
JOURNAL OF FLUID MECHANICS, 1995, 282 :1-20
[10]   EVIDENCE FOR A SINGULARITY OF THE 3-DIMENSIONAL, INCOMPRESSIBLE EULER EQUATIONS [J].
KERR, RM .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (07) :1725-1746