Data-driven causal model discovery and personalized prediction in Alzheimer's disease

被引:12
作者
Zheng, Haoyang [1 ]
Petrella, Jeffrey R. [2 ]
Doraiswamy, P. Murali [3 ,4 ,5 ]
Lin, Guang [1 ,6 ]
Hao, Wenrui [7 ]
机构
[1] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA
[2] Duke Univ Hlth Syst, Dept Radiol, Durham, NC 27710 USA
[3] Duke Univ, Sch Med, Dept Psychiat, Durham, NC 27710 USA
[4] Duke Univ, Sch Med, Dept Med, Durham, NC 27710 USA
[5] Duke Inst Brain Sci, Durham, NC 27710 USA
[6] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[7] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
加拿大健康研究院; 美国国家卫生研究院;
关键词
PROGRESSION; ASSOCIATION;
D O I
10.1038/s41746-022-00632-7
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
With the explosive growth of biomarker data in Alzheimer's disease (AD) clinical trials, numerous mathematical models have been developed to characterize disease-relevant biomarker trajectories over time. While some of these models are purely empiric, others are causal, built upon various hypotheses of AD pathophysiology, a complex and incompletely understood area of research. One of the most challenging problems in computational causal modeling is using a purely data-driven approach to derive the model's parameters and the mathematical model itself, without any prior hypothesis bias. In this paper, we develop an innovative data-driven modeling approach to build and parameterize a causal model to characterize the trajectories of AD biomarkers. This approach integrates causal model learning, population parameterization, parameter sensitivity analysis, and personalized prediction. By applying this integrated approach to a large multicenter database of AD biomarkers, the Alzheimer's Disease Neuroimaging Initiative, several causal models for different AD stages are revealed. In addition, personalized models for each subject are calibrated and provide accurate predictions of future cognitive status.
引用
收藏
页数:12
相关论文
共 35 条
[1]   Alzheimer's disease; a review of the pathophysiological basis and therapeutic interventions [J].
Abeysinghe, A. A. D. T. ;
Deshapriya, R. D. U. S. ;
Udawatte, C. .
LIFE SCIENCES, 2020, 256
[2]   Alzheimer's Disease - Future Therapy Based on Dendrimers [J].
Aliev, Gjumrakch ;
Ashraf, Ghulam Md ;
Tarasov, Vadim V. ;
Chubarev, Vladimir N. ;
Leszek, Jerzy ;
Gasiorowski, Kazimierz ;
Makhmutov, Alfiya ;
Baeesa, Saleh Salem ;
Avila-Rodriguez, Marco ;
Ustyugov, Aleksey A. ;
Bachurin, Sergey O. .
CURRENT NEUROPHARMACOLOGY, 2019, 17 (03) :288-294
[3]   Topical Discoveries on Multi-Target Approach to Manage Alzheimer's Disease [J].
Batool, Abida ;
Kamal, Mohammad Amjad ;
Rizvi, Syed Mohd Danish ;
Rashid, Sajid .
CURRENT DRUG METABOLISM, 2018, 19 (08) :704-713
[4]   Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database [J].
Bertram, Lars ;
McQueen, Matthew B. ;
Mullin, Kristina ;
Blacker, Deborah ;
Tanzi, Rudolph E. .
NATURE GENETICS, 2007, 39 (01) :17-23
[5]   Data Driven Mathematical Model of FOLFIRI Treatment for Colon Cancer [J].
Budithi, Aparajita ;
Su, Sumeyye ;
Kirshtein, Arkadz ;
Shahriyari, Leili .
CANCERS, 2021, 13 (11)
[6]   Alzheimer's Disease and Vascular Aging JACC Focus Seminar [J].
Cortes-Canteli, Marta ;
Iadecola, Costantino .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (08) :942-951
[7]   The Role of Exosomes in Pancreatic Cancer Microenvironment [J].
Friedman, Avner ;
Hao, Wenrui .
BULLETIN OF MATHEMATICAL BIOLOGY, 2018, 80 (05) :1111-1133
[8]   A Mathematical Model of Atherosclerosis with Reverse Cholesterol Transport and Associated Risk Factors [J].
Friedman, Avner ;
Hao, Wenrui .
BULLETIN OF MATHEMATICAL BIOLOGY, 2015, 77 (05) :758-781
[9]   Longitudinal Cognitive and Biomarker Measurements Support a Unidirectional Pathway in Alzheimer's Disease Pathophysiology [J].
Guo, Tengfei ;
Korman, Deniz ;
Baker, Suzanne L. ;
Landau, Susan M. ;
Jagust, William J. .
BIOLOGICAL PSYCHIATRY, 2021, 89 (08) :786-794
[10]   A mathematical model of aortic aneurysm formation [J].
Hao, Wenrui ;
Gong, Shihua ;
Wu, Shuonan ;
Xu, Jinchao ;
Go, Michael R. ;
Friedman, Avner ;
Zhu, Dai .
PLOS ONE, 2017, 12 (02)