Interactions of structurally different hemicelluloses with nanofibrillar cellulose

被引:114
作者
Eronen, Paula [1 ]
Osterberg, Monika [1 ]
Heikkinen, Susanna [2 ]
Tenkanen, Maija [2 ]
Laine, Janne [1 ]
机构
[1] Aalto Univ, Dept Forest Prod Technol, Sch Chem Technol, FI-0076 Aalto, Finland
[2] Univ Helsinki, Dept Food & Environm Sci, FI-00014 Helsinki, Finland
关键词
NFC; Arabinoxylan; Galactoglucomannan; Quartz crystal microbalance; Hardwood; Softwood; QUARTZ-CRYSTAL MICROBALANCE; SURFACE-PLASMON RESONANCE; VISCOELASTIC PROPERTIES; CEREAL ARABINOXYLANS; CROSS-LINKING; FILMS; ADSORPTION; SORPTION; WATER; PULP;
D O I
10.1016/j.carbpol.2011.06.031
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Both cellulose nanofibrils and hemicelluloses are promising renewable alternatives for sustainable composite materials. Nanofibrils can enhance the material properties and modified hemicelluloses can be used to functionalize nanofibrillar cellulose. For optimum performance the interactions between the components have to be known. In this work the interactions between cellulose nanofibrils prepared from hardwood and softwood kraft pulps without chemical or enzymatic modification and well characterized hemicelluloses from different origins were studied. The sorption and the layer properties were quantified in the aqueous state using quartz crystal microbalance with dissipation (QCM-D). The results verified that hemicelluloses have a natural affinity towards cellulose nanofibrillar substrates. Comparison of nanofibrils prepared from hardwood and softwood kraft pulp reveal that the different hemicellulose concentration and composition of the nanofibrillar cellulose affects the adsorption of hemicelluloses. However, the hemicellulose structure affected the adsorbed layers even more significantly than the origin of the cellulose nanofibrils. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1281 / 1290
页数:10
相关论文
共 66 条
[1]   Model films from native cellulose nanofibrils.: Preparation, swelling, and surface interactions [J].
Ahola, S. ;
Salmi, J. ;
Johansson, L. -S. ;
Laine, J. ;
Oesterberg, M. .
BIOMACROMOLECULES, 2008, 9 (04) :1273-1282
[2]  
Ahola S, 2008, BIORESOURCES, V3, P1315
[3]   Predicting the molecular shape of polysaccharides from dynamic interactions with water [J].
Almond, A ;
Sheehan, JK .
GLYCOBIOLOGY, 2003, 13 (04) :255-264
[4]  
[Anonymous], 1993, WOOD CHEM, DOI DOI 10.1016/B978-0-08-092589-9.50005-X
[5]  
[Anonymous], 1984, WOOD CHEM ULTRASTRUC, DOI DOI 10.1515/9783110839654
[6]  
Burton RA, 2010, NAT CHEM BIOL, V6, P724, DOI [10.1038/NCHEMBIO.439, 10.1038/nchembio.439]
[7]   Molecular properties of hemicelluloses located in the surface and inner layers of hardwood and softwood pulps [J].
Dahlman, O ;
Jacobs, A ;
Sjöberg, J .
CELLULOSE, 2003, 10 (04) :325-334
[8]   The osmotic pressure and conductivity of aqueous solutions of Congo-red, and reversible membrane equilibria [J].
Donnan, FG ;
Harris, AB .
JOURNAL OF THE CHEMICAL SOCIETY, 1911, 99 :1554-1577
[9]   Structural diversity and application potential of hemicelluloses [J].
Ebringerová, A .
MACROMOLECULAR SYMPOSIA, 2006, 232 :1-12
[10]   Review: current international research into cellulose nanofibres and nanocomposites [J].
Eichhorn, S. J. ;
Dufresne, A. ;
Aranguren, M. ;
Marcovich, N. E. ;
Capadona, J. R. ;
Rowan, S. J. ;
Weder, C. ;
Thielemans, W. ;
Roman, M. ;
Renneckar, S. ;
Gindl, W. ;
Veigel, S. ;
Keckes, J. ;
Yano, H. ;
Abe, K. ;
Nogi, M. ;
Nakagaito, A. N. ;
Mangalam, A. ;
Simonsen, J. ;
Benight, A. S. ;
Bismarck, A. ;
Berglund, L. A. ;
Peijs, T. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (01) :1-33