Influence of electromagnetic confinement on the characteristics of a triode magnetron sputtering system

被引:15
作者
Sagas, J. C. [1 ,2 ]
Fontana, L. C. [1 ]
Maciel, H. S. [2 ]
机构
[1] Santa Catarina State Univ, Plasma Phys Lab, BR-89223100 Joinville, SC, Brazil
[2] Technol Inst Aeronaut, Plasma & Proc Lab, BR-12228900 Sao Jose Dos Campos, SP, Brazil
关键词
Magnetron sputtering; Electromagnetic confinement; I-V characteristics; Film deposition; DISCHARGE VOLTAGE; TARGET; MODEL;
D O I
10.1016/j.vacuum.2010.11.002
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Three different configurations of magnetic traps were set up by changing the number of central magnets in a Triode Magnetron Sputtering system, where the anode consists of a grid positioned at a distance from an aluminum target on the cathode. The grid and the wall chamber are grounded and the plasma is formed in the space between the target and the grid. The current-voltage (I-V) characteristics of argon discharges were obtained, for each magnetic configuration and for various grid target distances. It is noticed that the magnetron efficiency strongly depends on the inter-electrode distance and magnetic trap configuration. The configuration with the highest unbalance coefficient has I-V curves that differ substantially from the usual relation observed in conventional magnetron discharges. In this case the usual I-V fitting curves of magnetron mode of operation are not appropriate to describe the electrical characteristics of the discharge. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:705 / 710
页数:6
相关论文
共 20 条
[1]   Anode effects in magnetron sputtering [J].
Belkind, A ;
Jansen, F .
SURFACE & COATINGS TECHNOLOGY, 1998, 99 (1-2) :52-59
[2]   Simplified model for the DC planar magnetron discharge [J].
Buyle, G ;
Depla, D ;
Eufinger, K ;
Haemers, J ;
De Bosscher, W ;
De Gryse, R .
VACUUM, 2004, 74 (3-4) :353-358
[3]   Recapture of secondary electrons by the target in a DC planar magnetron discharge [J].
Buyle, G ;
De Bosscher, W ;
Dopla, D ;
Eufinger, K ;
Haemers, J ;
De Gryse, R .
VACUUM, 2003, 70 (01) :29-35
[4]  
Chapman B., 1980, GLOW DISCHARGE PROCE, DOI DOI 10.1063/1.2914660
[5]   Discharge voltage measurements during magnetron sputtering [J].
Depla, D ;
Buyle, G ;
Haemers, J ;
De Gryse, R .
SURFACE & COATINGS TECHNOLOGY, 2006, 200 (14-15) :4329-4338
[6]   Magnetron sputter deposition: Linking discharge voltage with target properties [J].
Depla, D. ;
Mahieu, S. ;
De Gryse, R. .
THIN SOLID FILMS, 2009, 517 (09) :2825-2839
[7]   Characteristics of triode magnetron sputtering: the morphology of deposited titanium films [J].
Fontana, LC ;
Muzart, JLR .
SURFACE & COATINGS TECHNOLOGY, 1998, 107 (01) :24-30
[8]   Triode magnetron sputtering TiN film deposition [J].
Fontana, LC ;
Muzart, JLR .
SURFACE & COATINGS TECHNOLOGY, 1999, 114 (01) :7-12
[9]  
Lieberman M. A., 1994, PRINCIPLES PLASMA DI
[10]   CALCULATION OF THE CURRENT-VOLTAGE-PRESSURE CHARACTERISTICS OF DC DIODE SPUTTERING DISCHARGES [J].
MANIV, S ;
WESTWOOD, WD ;
SCANLON, PJ .
JOURNAL OF APPLIED PHYSICS, 1982, 53 (02) :856-860