Toeplitz Operators with Homogeneous Symbols on Polyharmonic Spaces

被引:1
作者
Loaiza, Maribel [1 ]
Morales-Garcia, Isidro [1 ]
Ramirez-Ortega, Josue [2 ]
机构
[1] IPN, Dept Matemat, CINVESTAV, Apartado Postal 14-740, Mexico City 07000, DF, Mexico
[2] Univ Veracruzana, Fac Matemat, Mexico City 91000, DF, Mexico
关键词
Harmonic function; Bergman Spaces; Toeplitz operator; C*-algebras of Toeplitz operators; C-ASTERISK-ALGEBRAS; POLY-BERGMAN SPACES;
D O I
10.1007/s11785-021-01133-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe C*-algebras generated by Toeplitz operators with homogeneous symbols acting on polyharmonic Bergman spaces of the upper half-plane Pi. The symbols considered here have finite limits at the points 0 and pi. Under these conditions on the family of symbols, a Toeplitz operator acting on the true polyharmonic space H-(n)(2)(Pi) is unitarily equivalent to a 2x2 matrix-valued function defined on (R) over bar. The C*-algebra generated by these matrix-valued functions turns out to be isomorphic to the algebra C := {f = (fij) is an element of M-2(C (R) over bar)) : f (+/-infinity) is diagonal, f(11)(+/-infinity) = f(22)(-/+infinity)}. Besides, we prove that the C*-algebra generated by Toeplitz operators with homogeneous symbols, acting on the polyharmonic Bergman space H-n(2)(Pi), is isomorphic to the C*-subalgebra of M-2n(C((R) over bar)) consisting of all matrix-valued functions f = (fij) such that f(-infinity) = (lambda I-1 0I 0I lambda I-2), f(+infinity) = (lambda I-2 0I 0I lambda I-1), lambda(1), lambda(2) is an element of C, where I is the n x n identity matrix.
引用
收藏
页数:32
相关论文
共 20 条
[1]  
Abreu L D., 2014, Harmonic and complex analysis and its applications, Trends Math., P1
[2]   Berezin transform and Toeplitz operators on harmonic Bergman spaces [J].
Choe, Boo Rim ;
Nam, Kyesook .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (10) :3135-3166
[3]   Toeplitz operators on Bergman spaces of polyanalytic functions [J].
Cuckovic, Zeljko ;
Le, Trieu .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 :961-973
[4]   Commutative C*-algebras of Toeplitz operators and quantization on the unit disk [J].
Grudsky, S ;
Quiroga-Bartanco, R ;
Vasilevski, N .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 234 (01) :1-44
[5]   Toeplitz algebra and Hankel algebra on the harmonic Bergman space [J].
Guo, KY ;
Zheng, DC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (01) :213-230
[6]   TOEPLITZ OPERATORS ON POLY-ANALYTIC SPACES VIA TIME-SCALE ANALYSIS [J].
Hutnik, Ondrej ;
Hutnikova, Maria .
OPERATORS AND MATRICES, 2014, 8 (04) :1107-1129
[7]   Wavelets from Laguerre Polynomials and Toeplitz-Type Operators [J].
Hutnik, Ondrej .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2011, 71 (03) :357-388
[8]   Affine coherent states and Toeplitz operators [J].
Hutnikova, Maria ;
Hutnik, Ondrej .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (24)
[9]   THE STRUCTURE OF CERTAIN OPERATOR ALGEBRAS [J].
KAPLANSKY, I .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 70 (MAR) :219-255
[10]   Poly-Bergman projections and orthogonal decompositions of L2-spaces over bounded domains [J].
Karlovich, Yuri I. ;
Pessoa, Luis V. .
OPERATOR ALGEBRAS, OPERATOR THEORY AND APPLICATIONS, 2008, 181 :263-+