Existence of boundary values of polyharmonic functions

被引:0
作者
Mikhailov, V. P. [1 ]
机构
[1] RAS, VA Steklov Math Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
polyharmonic function; boundary value; spherical harmonic; solid spherical harmonic; ELLIPTIC-EQUATIONS; LIMIT VALUES;
D O I
10.1070/SM2010v201n05ABEH004090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A necessary and sufficient condition for the existence of a limit in mean square at the boundary is established for a polyharmonic function in a ball.
引用
收藏
页码:735 / 757
页数:23
相关论文
共 50 条
[41]   Existence of solution for a boundary value problem of fractional order [J].
Zhang, SQ .
ACTA MATHEMATICA SCIENTIA, 2006, 26 (02) :220-228
[42]   EXISTENCE OF SOLUTION FOR A BOUNDARY VALUE PROBLEM OF FRACTIONAL ORDER [J].
张淑琴 .
ActaMathematicaScientia, 2006, (02) :220-228
[43]   Asymptotic boundary estimates for solutions to the p-Laplacian with infinite boundary values [J].
Mi, Ling .
BOUNDARY VALUE PROBLEMS, 2019,
[44]   Liouville-type theorems and existence results for stable-at-infinity solutions of higher-order m-polyharmonic problems [J].
Mtiri, Foued ;
Harrabi, Abdellaziz .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 502 (01)
[45]   Existence and boundary asymptotic behavior of large solutions of Hessian equations [J].
Ma, Shanshan ;
Li, Dongsheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 187 :1-17
[46]   EXISTENCE AND BOUNDARY BEHAVIOR OF SOLUTIONS FOR BOUNDARY BLOW-UP QUASILINEAR ELLIPTIC PROBLEMS WITH GRADIENT TERMS [J].
Liu, Chunlian .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2021, 13 (03) :281-295
[47]   On existence of Lyapunov functions for a stationary Kolmogorov equation with a probability solution [J].
Bogachev, V. I. ;
Roeckner, M. ;
Shaposhnikov, S. V. .
DOKLADY MATHEMATICS, 2014, 90 (01) :424-428
[48]   Existence of solutions for the fractional Nirenberg problem with indefinite curvature functions [J].
An, Jiaxing ;
Dou, Jingbo ;
Hu, Yunyun .
BULLETIN OF MATHEMATICAL SCIENCES, 2024, 14 (03)
[49]   Confidence intervals for seasonal relative risk with null boundary values [J].
Frangakis, CE ;
Varadhan, R .
EPIDEMIOLOGY, 2002, 13 (06) :734-737
[50]   EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR SEMILINEAR ELLIPTIC EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS [J].
Jiang, Qin ;
Ma, Sheng .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,