Existence of boundary values of polyharmonic functions

被引:0
作者
Mikhailov, V. P. [1 ]
机构
[1] RAS, VA Steklov Math Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
polyharmonic function; boundary value; spherical harmonic; solid spherical harmonic; ELLIPTIC-EQUATIONS; LIMIT VALUES;
D O I
10.1070/SM2010v201n05ABEH004090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A necessary and sufficient condition for the existence of a limit in mean square at the boundary is established for a polyharmonic function in a ball.
引用
收藏
页码:735 / 757
页数:23
相关论文
共 50 条
[31]   Polynomial approximation of polyharmonic functions on a complement of a John domain [J].
Andrievskii, Vladimir .
JOURNAL OF APPROXIMATION THEORY, 2015, 190 :116-132
[32]   On Riesz Decomposition for Super-Polyharmonic Functions in Rn [J].
Tovstolis, Alexander V. .
POTENTIAL ANALYSIS, 2015, 43 (03) :341-360
[33]   EXISTENCE OF NONTRIVIAL SOLUTIONS TO POLYHARMONIC EQUATIONS WITH SUBCRITICAL AND CRITICAL EXPONENTIAL GROWTH [J].
Lam, Nguyen ;
Lu, Guozhen .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (06) :2187-2205
[34]   Existence and stability properties of entire solutions to the polyharmonic equation (-Δ)mu = eu for any m ≥ 1 [J].
Farina, Alberto ;
Ferrero, Alberto .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (02) :495-528
[35]   On Boundary Values of Solutions of the Dirichlet Problem for Second Order Elliptic Equation [J].
Dumanyan, V. Zh. .
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2010, 45 (01) :26-42
[36]   On boundary values of solutions of the dirichlet problem for second order elliptic equation [J].
V. Zh. Dumanyan .
Journal of Contemporary Mathematical Analysis, 2010, 45 :26-42
[37]   The boundary values of solutions of an elliptic equation [J].
Gushchin, A. K. .
SBORNIK MATHEMATICS, 2019, 210 (12) :1724-1752
[38]   Boundary Values in Marine Machinery Maintenance [J].
Bielawski, Piotr .
SCIENTIFIC JOURNALS OF THE MARITIME UNIVERSITY OF SZCZECIN-ZESZYTY NAUKOWE AKADEMII MORSKIEJ W SZCZECINIE, 2005, 5 (77) :71-82
[39]   Boundary Values in Marine Machinery Maintenance [J].
Bielawski, Piotr .
SCIENTIFIC JOURNALS OF THE MARITIME UNIVERSITY OF SZCZECIN-ZESZYTY NAUKOWE AKADEMII MORSKIEJ W SZCZECINIE, 2006, 10 (82)
[40]   On Existence of a boundary value of a biharmonic function in a ball [J].
V. P. Mikhailov .
P-Adic Numbers, Ultrametric Analysis, and Applications, 2012, 4 (1) :34-45