Existence of boundary values of polyharmonic functions

被引:0
作者
Mikhailov, V. P. [1 ]
机构
[1] RAS, VA Steklov Math Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
polyharmonic function; boundary value; spherical harmonic; solid spherical harmonic; ELLIPTIC-EQUATIONS; LIMIT VALUES;
D O I
10.1070/SM2010v201n05ABEH004090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A necessary and sufficient condition for the existence of a limit in mean square at the boundary is established for a polyharmonic function in a ball.
引用
收藏
页码:735 / 757
页数:23
相关论文
共 50 条
[21]   On the mean value property for polyharmonic functions in the ball [J].
Karachik V.V. .
Siberian Advances in Mathematics, 2014, 24 (3) :169-182
[22]   Measure Estimates of Nodal Sets of Polyharmonic Functions [J].
Long Tian .
Chinese Annals of Mathematics, Series B, 2018, 39 :917-932
[23]   Gaussian extended cubature formulae for polyharmonic functions [J].
Bojanov, BD ;
Dimitrov, DK .
MATHEMATICS OF COMPUTATION, 2001, 70 (234) :671-683
[24]   Measure Estimates of Nodal Sets of Polyharmonic Functions [J].
Long TIAN .
Chinese Annals of Mathematics,Series B, 2018, (05) :917-932
[25]   A Dirichlet type problem for complex polyharmonic functions [J].
H. Grzebuła ;
S. Michalik .
Acta Mathematica Hungarica, 2017, 153 :216-229
[26]   POLYHARMONIC FUNCTIONS OF INFINITE ORDER ON ANNULAR REGIONS [J].
Kounchev, Ognyan ;
Render, Hermann .
TOHOKU MATHEMATICAL JOURNAL, 2013, 65 (02) :199-229
[27]   A Dirichlet type problem for complex polyharmonic functions [J].
Grzebula, H. ;
Michalik, S. .
ACTA MATHEMATICA HUNGARICA, 2017, 153 (01) :216-229
[28]   Existence and Symmetries for Elliptic Equations with Multipolar Potentials and Polyharmonic Operators [J].
Ferreira, Lucas C. F. ;
Mesquita, Claudia Aline A. S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (06) :1955-1982
[29]   Exhaustive existence and non-existence results for some prototype polyharmonic equations in the whole space [J].
Quoc Anh Ngo ;
Van Hoang Nguyen ;
Quoc Hung Phan ;
Ye, Dong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (12) :11621-11645
[30]   Polynomial approximation of CM functions by means of boundary values and applications:: A survey [J].
Costabile, F. A. ;
Dell'Accio, F. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 210 (1-2) :116-135