Distributed Learning with Regularized Least Squares
被引:1
|
作者:
Lin, Shao-Bo
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Math, Tat Chee Ave, Kowloon, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Dept Math, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
Lin, Shao-Bo
[1
]
Guo, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Dept Math, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
Guo, Xin
[2
]
Zhou, Ding-Xuan
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Math, Tat Chee Ave, Kowloon, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Dept Math, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
Zhou, Ding-Xuan
[1
]
机构:
[1] City Univ Hong Kong, Dept Math, Tat Chee Ave, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
Distributed learning;
divide-and-conquer;
error analysis;
integral operator;
second order decomposition;
KERNEL;
ALGORITHMS;
REGRESSION;
RATES;
OPERATORS;
NETWORKS;
GRADIENT;
THEOREM;
D O I:
暂无
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
We study distributed learning with the least squares regularization scheme in a reproducing kernel Hilbert space (RKHS). By a divide-and-conquer approach, the algorithm partitions a data set into disjoint data subsets, applies the least squares regularization scheme to each data subset to produce an output function, and then takes an average of the individual output functions as a final global estimator or predictor. We show with error bounds and learning rates in expectation in both the L-2-metric and RKHS-metric that the global output function of this distributed learning is a good approximation to the algorithm processing the whole data in one single machine. Our derived learning rates in expectation are optimal and stated in a general setting without any eigenfunction assumption. The analysis is achieved by a novel second order decomposition of operator differences in our integral operator approach. Even for the classical least squares regularization scheme in the RKHS associated with a general kernel, we give the best learning rate in expectation in the literature.
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
Hu, Ting
Zhou, Ding-Xuan
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Sch Data Sci, Kowloon, Hong Kong, Peoples R China
City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
机构:
Univ Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R ChinaUniv Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
Liu, Jiamin
Gao, Junzhuo
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Math, Hong Kong, Peoples R ChinaUniv Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
Gao, Junzhuo
Lian, Heng
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518000, Peoples R ChinaUniv Sci & Technol Beijing, Sch Math & Phys, Beijing 100083, Peoples R China
Lian, Heng
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE,
2025,
7
(01):
: 253
-
273
机构:
Nanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing 210016, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing 210016, Peoples R China
Xue, Hui
Chen, Songcan
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing 210016, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing 210016, Peoples R China
Chen, Songcan
Yang, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R ChinaNanjing Univ Aeronaut & Astronaut, Dept Comp Sci & Engn, Nanjing 210016, Peoples R China
机构:
Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R ChinaHubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
Fu, Yingxiong
Peng, Jiangtao
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R ChinaHubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
Peng, Jiangtao
Dong, Xuemei
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Gongshang Univ, Sch Math & Stat, Hangzhou 310018, Zhejiang, Peoples R ChinaHubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China