Memory State Tracker: A Memory Network based Dialogue State Tracker

被引:0
作者
Wang, Di [1 ]
O'Keefe, Simon [1 ]
机构
[1] Univ York, Dept Comp Sci, York, N Yorkshire, England
来源
ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 1 | 2021年
关键词
Dialogue State Tracker; Memory Network;
D O I
10.5220/0010385705330538
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dialogue State Tracking (DST) is a core component towards task oriented dialogue system. It fills manually-set slots at each turn of an utterance, which indicate the current topics or user requirement. In this work we propose a memory based state tracker that includes a memory encoder which encodes the dialogue history into a memory vector, and then connects to a pointer network which makes predictions. Our model reached a joint goal accuracy of 49.16% on MultiWOZ 2.0 data set (Budzianowski et al., 2018) and 47.27% on MultiWOZ 2.1 data set (Eric et al., 2019), outperforming the benchmark result.
引用
收藏
页码:533 / 538
页数:6
相关论文
共 19 条
[11]  
Pennington J., 2014, P 2014 C EMP METH NA, P1532, DOI DOI 10.3115/V1/D14-1162
[12]  
Poupart P, 2019, ARXIV PREPRINT ARXIV
[13]  
Qiu L, 2019, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), P6140
[14]  
Ramadan O., 2018, ARXIV PREPRINT ARXIV
[15]  
Rosenfeld A, 2014, AAMAS'14: PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, P525
[16]  
Sukhbaatar S., 2015, P ADV NEUR INF PROC, P2440
[17]  
Wu Chenfei, 2019, ARXIV PREPRINT ARXIV
[18]  
Xu P., 2018, ARXIV PREPRINT ARXIV
[19]  
Zhong V, 2018, PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL), VOL 1, P1458