Maps on Mn preserving lie products

被引:0
作者
Dolinar, Gregor [1 ]
机构
[1] Univ Ljubljana, Fac Elect Engn, SI-1000 Ljubljana, Slovenia
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2007年 / 71卷 / 3-4期
关键词
non-linear preserver problem; Lie product;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M-n be the Lie algebra of all n x n complex matrices with the Lie product [A, B] = AB - BA and let phi : M-n -> M-n satisfy phi([A, B]) = [phi(A), phi(B)], A, B is an element of M-n. Then phi(M-n) is a commutative subset of M-n or there exist an invertible matrix T is an element of M-n, a function phi : M-n -> C satisfying phi(C) = 0 for every trace zero matrix C is an element of M-n, and a homomorphism f of the complex field, such that phi([a(ij)]) = T[f(a(ij))]T-1 + phi([a(ij)])I for all [a(ij)] is an element of M-n, or phi([a(ij)]) = -T[f(a(ij))]T-t(-1) + phi([a(ij)])I for all [a(ij)] is an element of M-n.
引用
收藏
页码:467 / 477
页数:11
相关论文
共 5 条
[1]  
[Anonymous], 1991, TOPIC MATRIX ANAL
[2]   Maps on upper triangular matrices preserving Lie products [J].
Dolinar, Gregor .
LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (02) :191-198
[3]   MULTIPLICATIVE MAPS OF MATRIX SEMI-GROUPS [J].
JODEIT, M ;
LAM, TY .
ARCHIV DER MATHEMATIK, 1969, 20 (01) :10-&
[4]  
MOLNAR L, 2002, ADV MAT, V3, P305
[5]  
Semrl P, 2005, ACTA SCI MATH, V71, P781