Reinforcement Learning of the Prediction Horizon in Model Predictive Control

被引:20
作者
Bohn, Eivind [1 ]
Gros, Sebastien [2 ]
Moe, Signe [1 ]
Johansen, Tor Arne [2 ,3 ]
机构
[1] SINTEF Digital, Oslo, Norway
[2] NTNU, Dept Engn Cybernet, Trondheim, Norway
[3] Ctr Autonomous Marine Operat & Syst, Trondheim, Norway
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 06期
关键词
Adaptive horizon model predictive control; Reinforcement learning control;
D O I
10.1016/j.ifacol.2021.08.563
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Model predictive control (MPC) is a powerful trajectory optimization control technique capable of controlling complex nonlinear systems while respecting system constraints and ensuring safe operation. The MPC's capabilities come at the cost of a high online computational complexity, the requirement of an accurate model of the system dynamics, and the necessity of tuning its parameters to the specific control application. The main tunable parameter affecting the computational complexity is the prediction horizon length, controlling how far into the future the MPC predicts the system response and thus evaluates the optimality of its computed trajectory. A longer horizon generally increases the control performance, but requires an increasingly powerful computing platform, excluding certain control applications. The performance sensitivity to the prediction horizon length varies over the state space, and this motivated adaptive horizon model predictive control (AHMPC), which adapts the prediction horizon according to some criteria. In this paper we propose to learn the optimal prediction horizon as a function of the state using reinforcement learning (RL). We show how the RL learning problem can be formulated and test our method on two control tasks - showing clear improvements over the fixed horizon MPC scheme - while requiring only minutes of learning. Copyright (C) 2021 The Authors.
引用
收藏
页码:314 / 320
页数:7
相关论文
共 21 条
[1]  
Allgower F., 1999, Advances in Control. Highlights of ECC'99, P391
[2]   Provably safe and robust learning-based model predictive control [J].
Aswani, Anil ;
Gonzalez, Humberto ;
Sastry, S. Shankar ;
Tomlin, Claire .
AUTOMATICA, 2013, 49 (05) :1216-1226
[3]   A General Safety Framework for Learning-Based Control in Uncertain Robotic Systems [J].
Fisac, Jaime F. ;
Akametalu, Anayo K. ;
Zeilinger, Melanie N. ;
Kaynama, Shahab ;
Gillula, Jeremy ;
Tomlin, Claire J. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (07) :2737-2752
[4]  
Fujimoto S, 2018, PR MACH LEARN RES, V80
[5]   Machine Learning Based Adaptive Prediction Horizon in Finite Control Set Model Predictive Control [J].
Gardezi, Muhammad Saleh Murtaza ;
Hasan, Ammar .
IEEE ACCESS, 2018, 6 :32392-32400
[6]  
Haarnoja T, 2018, PR MACH LEARN RES, V80
[7]   Adaptive Horizon Model Predictive Control [J].
Krener, Arthur J. .
IFAC PAPERSONLINE, 2018, 51 (13) :31-36
[8]  
Lau M., 2015, P EUR CONTR C
[9]   Constrained model predictive control: Stability and optimality [J].
Mayne, DQ ;
Rawlings, JB ;
Rao, CV ;
Scokaert, POM .
AUTOMATICA, 2000, 36 (06) :789-814
[10]  
Mehndiratta M, 2018, IEEE INT C INT ROBOT, P3016, DOI 10.1109/IROS.2018.8594350