Integrated biosensors for monitoring microphysiological systems

被引:26
作者
Mou, Lei [1 ,2 ]
Mandal, Kalpana [1 ]
Mecwan, Marvin Magan [1 ]
Hernandez, Ana Lopez [1 ]
Maity, Surjendu [1 ]
Sharma, Saurabh [1 ]
Herculano, Rondinelli Donizetti [1 ,3 ]
Kawakita, Satoru [1 ]
Jucaud, Vadim [1 ]
Dokmeci, Mehmet Remzi [1 ]
Khademhosseini, Ali [1 ]
机构
[1] Terasaki Inst Biomed Innovat, 1018 Westwood Blvd, Los Angeles, CA 90024 USA
[2] Guangzhou Med Univ, Affiliated Hosp 3, Dept Clin Lab, 63 Duobao Rd, Guangzhou, Guangdong, Peoples R China
[3] Sao Paulo State Univ, UNESP, Sch Pharmaceut Sci, Dept Bioproc & Biotechnol Engn, BR-14801902 Araraquara, SP, Brazil
基金
美国国家卫生研究院;
关键词
EPITHELIAL ELECTRICAL-RESISTANCE; ORGANS-ON-CHIPS; REAL-TIME; ELECTROCHEMICAL BIOSENSOR; MICROFLUIDIC DEVICE; PLATFORM; SENSOR; HEART; NANOMATERIALS; TECHNOLOGY;
D O I
10.1039/d2lc00262k
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microphysiological systems (MPSs), also known as organ-on-a-chip models, aim to recapitulate the functional components of human tissues or organs in vitro. Over the last decade, with the advances in biomaterials, 3D bioprinting, and microfluidics, numerous MPSs have emerged with applications to study diseased and healthy tissue models. Various organs have been modeled using MPS technology, such as the heart, liver, lung, and blood-brain barrier. An important aspect of in vitro modeling is the accurate phenotypical and functional characterization of the modeled organ. However, most conventional characterization methods are invasive and destructive and do not allow continuous monitoring of the cells in culture. On the other hand, microfluidic biosensors enable in-line, real-time sensing of target molecules with an excellent limit of detection and in a non-invasive manner, thereby effectively overcoming the limitation of the traditional techniques. Consequently, microfluidic biosensors have been increasingly integrated into MPSs and used for in-line target detection. This review discusses the state-of-the-art microfluidic biosensors by providing specific examples, detailing their main advantages in monitoring MPSs, and highlighting current developments in this field. Finally, we describe the remaining challenges and potential future developments to advance the current state-of-the-art in integrated microfluidic biosensors.
引用
收藏
页码:3801 / 3816
页数:16
相关论文
共 155 条
[1]   Microfluidic heart on a chip for higher throughput pharmacological studies [J].
Agarwal, Ashutosh ;
Goss, Josue Adrian ;
Cho, Alexander ;
McCain, Megan Laura ;
Parker, Kevin Kit .
LAB ON A CHIP, 2013, 13 (18) :3599-3608
[2]   A Microdevice Platform Recapitulating Hypoxic Tumor Microenvironments [J].
Ando, Yuta ;
Ta, Hoang P. ;
Yen, Daniel P. ;
Lee, Sang-Sin ;
Raola, Sneha ;
Shen, Keyue .
SCIENTIFIC REPORTS, 2017, 7
[3]   Microfluidic very large scale integration (mVLSI) with integrated micromechanical valves [J].
Araci, Ismail Emre ;
Quake, Stephen R. .
LAB ON A CHIP, 2012, 12 (16) :2803-2806
[4]   Microphysiological Systems: Next Generation Systems for Assessing Toxicity and Therapeutic Effects of Nanomaterials [J].
Ashammakhi, Nureddin ;
Darabi, Mohammad Ali ;
Celebi-Saltik, Betul ;
Tutar, Rumeysa ;
Hartel, Martin C. ;
Lee, Junmin ;
Hussein, Saber M. ;
Goudie, Marcus J. ;
Cornelius, Mercedes Brianna ;
Dokmeci, Mehmet R. ;
Khademhosseini, Ali .
SMALL METHODS, 2020, 4 (01)
[5]   Microfluidic-Based Oxygen (O2) Sensors for On-Chip Monitoring of Cell, Tissue and Organ Metabolism [J].
Azimzadeh, Mostafa ;
Khashayar, Patricia ;
Amereh, Meitham ;
Tasnim, Nishat ;
Hoorfar, Mina ;
Akbari, Mohsen .
BIOSENSORS-BASEL, 2022, 12 (01)
[6]  
Aziz Aziz Ur Rehman, 2017, Bioengineering-Basel, V4, DOI [10.3390/bioengineering4020039, 10.3390/bioengineering4020039]
[7]   High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows† [J].
Azizgolshani, H. ;
Coppeta, J. R. ;
Vedula, E. M. ;
Marr, E. E. ;
Cain, B. P. ;
Luu, R. J. ;
Lech, M. P. ;
Kann, S. H. ;
Mulhern, T. J. ;
Tandon, V. ;
Tan, K. ;
Haroutunian, N. J. ;
Keegan, P. ;
Rogers, M. ;
Gard, A. L. ;
Baldwin, K. B. ;
de Souza, J. C. ;
Hoefler, B. C. ;
Bale, S. S. ;
Kratchman, L. B. ;
Zorn, A. ;
Patterson, A. ;
Kim, E. S. ;
Petrie, T. A. ;
Wiellette, E. L. ;
Williams, C. ;
Isenberg, B. C. ;
Charest, J. L. .
LAB ON A CHIP, 2021, 21 (08) :1454-1474
[8]   Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction [J].
Bavli, Danny ;
Prill, Sebastian ;
Ezra, Elishai ;
Levy, Gahl ;
Cohen, Merav ;
Vinken, Mathieu ;
Vanfleteren, Jan ;
Jaeger, Magnus ;
Nahmias, Yaakov .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (16) :E2231-E2240
[9]   Recent Advances in Microfluidic Technology for Bioanalysis and Diagnostics [J].
Berlanda, Simon F. ;
Breitfeld, Maximilian ;
Dietsche, Claudius L. ;
Dittrich, Petra S. .
ANALYTICAL CHEMISTRY, 2021, 93 (01) :311-331
[10]   A 3D microfluidic liver model for high throughput compound toxicity screening in the OrganoPlate® [J].
Bircsak, Kristin M. ;
DeBiasio, Richard ;
Miedel, Mark ;
Alsebahi, Alaa ;
Reddinger, Ryan ;
Saleh, Anthony ;
Shun, Tongying ;
Vernetti, Lawrence A. ;
Gough, Albert .
TOXICOLOGY, 2021, 450