Regularity in Sobolev and Besov Spaces for Parabolic Problems on Domains of Polyhedral Type

被引:2
作者
Dahlke, Stephan [1 ]
Schneider, Cornelia [2 ]
机构
[1] Philipps Univ Marburg, FB12 Math & Comp Sci, Hans Meerwein Str, D-35032 Marburg, Germany
[2] Friedrich Alexander Univ Erlangen Nuremberg, Appl Math 3, Cauerstr 11, D-91058 Erlangen, Germany
关键词
Parabolic evolution equations; Besov spaces; Kondratiev spaces; Adaptive algorithms; BOUNDARY-VALUE-PROBLEMS; DIRICHLET; INTERFACE; EQUATIONS;
D O I
10.1007/s12220-021-00700-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the regularity of solutions to linear and nonlinear evolution equations extending our findings in Dahlke and Schneider (Anal Appl 17(2):235-291, 2019, Thms. 4.5, 4.9, 4.12, 4.14) to domains of polyhedral type. In particular, we study the smoothness in the specific scale B-tau,tau(r), 1/tau = r/d + 1/p of Besov spaces. The regularity in these spaces determines the approximation order that can be achieved by adaptive and other nonlinear approximation schemes. We show that for all cases under consideration the Besov regularity is high enough to justify the use of adaptive algorithms.
引用
收藏
页码:11741 / 11779
页数:39
相关论文
共 46 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]   Parabolic mean values and maximal estimates for gradients of temperatures [J].
Aimar, Hugo ;
Gomez, Ivana ;
Laffei, Bibiana .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (08) :1939-1956
[3]   Parabolic Besov Regularity for the Heat Equation [J].
Aimar, Hugo ;
Gomez, Ivana .
CONSTRUCTIVE APPROXIMATION, 2012, 36 (01) :145-159
[4]   On Besov Regularity of Temperatures [J].
Aimar, Hugo ;
Gomez, Ivana ;
Iaffei, Bibiana .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2010, 16 (06) :1007-1020
[5]  
[Anonymous], 2001, Mathematical Surveys and Monographs
[6]  
[Anonymous], 2006, Springer Series in Computational Mathematics
[7]  
[Anonymous], 1997, Wavelet Anal. Appl.
[8]  
Bacuta C, 2010, DOC MATH, V15, P687
[9]   On the Lq(Lp)-regularity and Besov smoothness of stochastic parabolic equations on bounded Lipschitz domains [J].
Cioica, Petru A. ;
Kim, Kyeong-Hun ;
Lee, Kijung ;
Lindner, Felix .
ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 :1-41
[10]   On the Limit Regularity in Sobolev and Besov Scales Related to Approximation Theory [J].
Cioica-Licht, Petru A. ;
Weimar, Markus .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (01)