Generalized singular value decomposition;
Truncated generalized singular value decomposition;
Ill-posed problem;
PARAMETER CHOICE RULES;
CONDITION NUMBER;
REGULARIZATION;
ERROR;
D O I:
10.1007/s11075-014-9859-3
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The generalized singular value decomposition (GSVD) of a pair of matrices expresses each matrix as a product of an orthogonal, a diagonal, and a nonsingular matrix. The nonsingular matrix, which we denote by X (T) , is the same in both products. Available software for computing the GSVD scales the diagonal matrices and X (T) so that the squares of corresponding diagonal entries sum to one. This paper proposes a scaling that seeks to minimize the condition number of X (T) . The rescaled GSVD gives rise to new truncated GSVD methods, one of which is well suited for the solution of linear discrete ill-posed problems. Numerical examples show this new truncated GSVD method to be competitive with the standard truncated GSVD method as well as with Tikhonov regularization with regard to the quality of the computed approximate solution.
机构:
Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy
Noschese, Silvia
;
Reichel, Lothar
论文数: 0引用数: 0
h-index: 0
机构:
Kent State Univ, Dept Math Sci, Kent, OH 44242 USAUniv Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy
机构:
Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy
Noschese, Silvia
;
Reichel, Lothar
论文数: 0引用数: 0
h-index: 0
机构:
Kent State Univ, Dept Math Sci, Kent, OH 44242 USAUniv Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy