Equilibrium states for natural extensions of non-uniformly expanding local homeomorphisms

被引:0
作者
Fisher, Todd [1 ]
Oliveira, Krerley [2 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[2] Univ Fed Alagoas, Inst Matemat, Maceio, Alagoas, Brazil
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2021年 / 36卷 / 04期
关键词
Dynamical systems; equilibrium states; attractor; measures of maximal entropy; natural extension; ATTRACTORS; SYSTEMS;
D O I
10.1080/14689367.2021.1983773
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the uniqueness of equilibrium states for the natural extension of a topologically exact, non-uniformly expanding, local homeomorphism with a Holder continuous potential function. We do this by applying general techniques developed by Climenhaga and Thompson, and show there is a natural condition on the decompositions which guarantees a unique equilibrium state exists. We then show how to apply these results to certain partially hyperbolic attractors.
引用
收藏
页码:685 / 698
页数:14
相关论文
共 16 条
[1]   SRB measures for non-hyperbolic systems with multidimensional expansion [J].
Alves, JF .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (01) :1-32
[2]   Equilibrium stability for non-uniformly hyperbolic systems [J].
Alves, Jose F. ;
Ramos, Vanessa ;
Siqueira, Jaqueline .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 :2619-2642
[3]  
[Anonymous], 2008, Dimension theory in dynamical systems: contemporary views and applications
[4]  
[Anonymous], 1974, I HAUTES ETUDES SCI, DOI 10.1007/BF02684369
[5]  
[Anonymous], 2004, ZURICH LECT ADV MATH
[6]  
BOWEN R, 1975, MATH SYST THEORY, V8, P193, DOI 10.1007/BF01762666
[7]   Equilibrium states for Mane diffeomorphisms [J].
Climenhaga, Vaughn ;
Fisher, Todd ;
Thompson, Daniel J. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 :2433-2455
[8]   Unique equilibrium states for Bonatti-Viana diffeomorphisms [J].
Climenhaga, Vaughn ;
Fisher, Todd ;
Thompson, Daniel J. .
NONLINEARITY, 2018, 31 (06) :2532-2570
[9]   Unique equilibrium states for flows and homeomorphisms with non-uniform structure [J].
Climenhaga, Vaughn ;
Thompson, Daniel J. .
ADVANCES IN MATHEMATICS, 2016, 303 :745-799
[10]   INTRINSIC ERGODICITY BEYOND SPECIFICATION: β-SHIFTS, S-GAP SHIFTS, AND THEIR FACTORS [J].
Climenhaga, Vaughn ;
Thompson, Daniel J. .
ISRAEL JOURNAL OF MATHEMATICS, 2012, 192 (02) :785-817