On wave propagation in inhomogeneous systems

被引:34
作者
Modinos, A
Stefanou, N
Psarobas, IE
Yannopapas, V
机构
[1] Univ Athens, Sect Solid State Phys, GR-15784 Athens, Greece
[2] Natl Tech Univ Athens, Dept Phys, GR-15773 Athens, Greece
来源
PHYSICA B | 2001年 / 296卷 / 1-3期
关键词
wave propagation; inhomogeneous systems; multiple scattering; photonic crystals; phononic crystals;
D O I
10.1016/S0921-4526(00)00795-X
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We present a theory of electron, electromagnetic, and elastic wave propagation in systems consisting of nonoverlapping scatterers in a host medium. The theory provides a framework for a unified description of wave propagation in three-dimensional periodic structures, finite slabs of layered structures, and systems with impurities: isolated impurities. impurity aggregates, or randomly distributed impurities. We point out the similarities and differences between the different cases considered, and discuss the numerical implementation of the formalism. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:167 / 173
页数:7
相关论文
共 50 条
[21]   Invariant imbedding theory of wave propagation in arbitrarily inhomogeneous stratified bi-isotropic media [J].
Kim, Seulong ;
Kim, Kihong .
JOURNAL OF OPTICS, 2016, 18 (06)
[22]   Analysis of High-Frequency Electromagnetic Wave Propagation in the Inshore Shallow Seawater with Inhomogeneous Medium [J].
Gui, Renzhou ;
Li, Juan ;
Tong, Mei Song .
2021 IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, ANTENNAS, COMMUNICATIONS AND ELECTRONIC SYSTEMS (COMCAS), 2021, :314-316
[23]   A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates [J].
Ebrahimi, Farzad ;
Barati, Mohammad Reza ;
Dabbagh, Ali .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2016, 107 :169-182
[24]   Elastic wave propagation in cellular systems - Experiments on single rings and ring systems [J].
Shim, V. P. W. ;
Lan, R. ;
Guo, Y. B. ;
Yang, L. M. .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2007, 34 (10) :1565-1584
[25]   STRUCTURAL DIFFERENCES IN WAVE-PROPAGATION IN DISCRETE AND CONTINUOUS SYSTEMS [J].
DIETERMAN, HA ;
STIELTJES, JED ;
BAVINCK, H .
ARCHIVE OF APPLIED MECHANICS, 1995, 66 (1-2) :100-110
[26]   HIGH-ORDER WAVE PROPAGATION ALGORITHMS FOR HYPERBOLIC SYSTEMS [J].
Ketcheson, David I. ;
Parsani, Matteo ;
Leveque, Randall J. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01) :A351-A377
[27]   COMPUTATION OF THE EIGENVALUES OF WAVE-PROPAGATION IN PERIODIC SUBSTRUCTURAL SYSTEMS [J].
WILLIAMS, FW ;
ZHONG, WX ;
BENNETT, PN .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 1993, 115 (04) :422-426
[28]   Wave Propagation in an Elastic Medium Intersected by Systems of Parallel Fractures [J].
L. A. Molotkov .
Journal of Mathematical Sciences, 2004, 122 (5) :3548-3563
[29]   Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory [J].
Ebrahimi, Farzad ;
Barati, Mohammad Reza ;
Haghi, Parisa .
JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (17) :3809-3818
[30]   Assessment of the Lattice Discrete Element Method in the simulation of wave propagation in inhomogeneous linearly elastic geologic materials [J].
Iturrioz, Ignacio ;
Riera, Jorge D. .
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2021, 151